K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2015

Hình tự vẽ nhé!

a) Xét tam giác ABC và Tam giác ADE

Có: AD=AB(gt)

AE=AC(gt)

góc BAC= góc DAE( 2 góc đối đỉnh)

Vậy tam giác ABC = tam giác ADE (c-g-c)

b) Ta có tam giác ABC= tam giác ADE( chứng minh trên)

Suy ra góc EBA=góc ADC(2 góc tương ứng)

Vậy BE song song với DC ( có 2 góc so le trong bằng nhau)

 

28 tháng 11 2015

A E D B C 1 2 H K

a) Ta có : EC và DB là cặp góc đối đỉnh => góc A= góc A2

Xét tam giác ADE và tam giác ABC có :

EA = AC (gt)

BA = AD (gt)

góc A1 = góc A2 ( CM trên )

=> \(\Delta ADE=\Delta ABC\)    (c.g.c)    (đpcm)

b) Vì  \(\Delta ADE=\Delta ABC\) => góc AED = góc ACB  ( cặp góc tương ứng )

Mà hai góc này là cặp góc so le trong

=> BE // CD (đpcm)

c) Vì  \(\Delta ADE=\Delta ABC\)  => ED = BC ( cặp cạnh tương ứng )  

Vì H là trung điểm của BC => BH = HC = \(\frac{BC}{2}\)=> HC = \(\frac{ED}{2}\)(1)

Vì K là trung điểm của ED => EK = KD = \(\frac{ED}{2}\)(2)

Từ (1) và (2) => HC = EK

Xét tam giác AKE và tam giác AHC có :

góc AEK = ACH  (CM ở b)

AE = AC (gt)

EK = HC (CM trên)

=> \(\Delta AKE=\Delta AHC\) (c.g.c)

=> AK = AH (cặp cạnh tương ứng)

=> A là trung điểm của HK (đpcm)

Tick mk nha!!!

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

=>ΔABC=ΔADE

b: góc DEB+góc CBA=45+45=90 độ

=>DE vuông góc BC tại H

c: Sửa đề: H là giao của DE với BC

Xét ΔHEB vuông tại H có góc HEB=45 độ

nên ΔHEB vuông cân tại H

=>HE=HB

13 tháng 12 2021

a: Xét tứ giác BEDC có 

A là trung điểm của EC

A là trung điểm của BD

Do đó: BEDC là hình bình hành

Suy ra: BE=CD

8 tháng 6 2023

A B C D E I

a) chứng minh \(\Delta ABC=\Delta ADC\)

xét 2 tam giác vuông ABC và ADC:

có AC: cạnh chung

AD=AB (gia thiết) 

=> \(\Delta ABC=\Delta ADC\) (2cgv)

 

b) chứng minh DC//BE

xét tứ giác BEDC có 2 đường chéo BD và EC cắt nhau tại trung điểm A của mỗi đường => tứ giác BEDC là hình bình hành => DC//BE

 

c) chứng minh BE = 2AI

ta có BEDC là hình bình hành => BE=DC

lại có tam giác DAC vuông tại A => đường trung tuyến AI bằng một nửa cạnh huyền, tức là \(AI=\dfrac{1}{2}DC\) hay \(DC=2.AI\) hay \(BE=2.AI\)

chúc em học tốt

8 tháng 6 2023

Cậu tự vẽ hình nhé.

a,  Xét \(\Delta ABC\) vuông tại A và \(\Delta ADC\) vuông tại A có:

                       AB = AD(gt)

                       AC chung 

          \(\Rightarrow\Delta ABC=\Delta ADC\left(ch-cgv\right)\)

b, Ta có \(DB\perp EC\) tại \(A\)

 mà \(DA=AB\left(gt\right)\)

        \(AE=AC\left(gt\right)\)

\(\Rightarrow\) Tứ giác DCBE là hình thoi ( 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường )

\(\Rightarrow DC//BE\) ( tính chất hình thoi )

c,   Xét \(\Delta DAC\) vuông tại A có:

      I là trung điểm của DC 

 \(\Rightarrow AI=DI=IC=\dfrac{1}{2}DC\)

\(\Rightarrow2AI=DC\) 

Lại có DC = EB ( DCBE là hình thoi )

\(\Rightarrow2AI=BE\)

18 tháng 1 2022

a) Xét △ ABC và △ AED ta có:

     AB = AE ( gt )

     \(\widehat{A_1}=\widehat{A_2}\) ( đối đỉnh )

     AC = AD ( gt )

⇒ △ ABC = △ AED  ( c - g - c )

b ) Vi △ ABC = △ AED  ( cmt )

⇒   \(\widehat{D}=\widehat{C}\)

Mà 2 góc ở vị trí so le trong nên 

⇒ DE // BC

c) Vì △ ABC = △ AED ( cmt )

⇒ BC = ED = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\) ED

⇒ DN = MC

Xét △ DNA và △ CMA có:

     AD = AC ( gt )

     \(\widehat{D}=\widehat{C}\)

     DN = MC ( cm )

⇒ △ DNA = △ CMA ( c - g - c )

⇒ \(\widehat{DAN}=\widehat{CAM}\)

Do đó: N, A, M thẳng hàng

  

18 tháng 1 2022

em camon nhìu ạ

12 tháng 10 2021

a: Xét ΔABC và ΔAED có 

AB=AE

\(\widehat{BAC}=\widehat{EAD}\)

AC=AD

Do đó: ΔABC=ΔAED

a: Xét ΔADM và ΔACM co

AD=AC

DM=CM

AM chung

=>ΔADM=ΔACM

b: Xét ΔAEN và ΔABN có

AE=AB

EN=BN

AN chung

=>ΔAEN=ΔABN