Cho tam giác ABC vuông cân tại A, đường cao AH. Trên AB lấy điểm D, trên AC lấy điểm E sao cho AD=AE. Gọi I là trung điểm của DE. CMR: HD=HE và IA=IH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHE vuông tại H và ΔADE vuông tại D có
AE chung
AH=AD
=>ΔAHE=ΔADE
=>HE=DE và góc EAH=góc DAE
=>AE là phân giác của góc DAH
AH=AD
EH=ED
=>AE là trung trực của HD
=>I là trung điểm của HD
=>IH=ID
b: Xét ΔEHF vuông tại H và ΔEDC vuông tại D có
EH=ED
góc HEF=góc DEC
=>ΔEHF=ΔEDC
=>EF=EC
đề có gì đó sai sai, điểm D k phải trung điểm của AB, E không phải là TĐ của AC do đó không cách đều A nên không cm được câu a. Bạn nên xem lại đề hoặc nên vẽ hình ra đi
Tam giác BDE.m là trung điểm của DE,N là trung điểm của BE => MN là đường trung bình của tam giác BDE=> MN//DB <=> MN//BA
tương tự c/m MQ là đường trung điểm của tam giác DEC => MQ//EC hay MQ//AC.Mà AC vuông góc AB=> MN vuông góc PQ => góc MNQ = 90
Tượng từ theo cách đường trung bình thì các góc còn lại của tứ giác MNPQ = 90 => là hình chữ nhạt
MN là đường trung bình => MN = 1/2 DB,MQ=1/2 EC mà EC=DB => MN=DB
=> tam giác là hình vuông (DHNB)
bó tay bó chân bó não
a) *Chứng minh HD = HE.
Tam giác ABC cân tại A có đường cao AH xuất phát từ đỉnh A nên đồng thời là đường phân giác.
\(\Rightarrow\)^HAB = ^HAC mà D \(\in\)AB, E \(\in\)AC nên ^HAD = ^HAE . Từ đây dễ c/m \(\Delta\)HEA = \(\Delta\) HDA (c.g.c)\(\Rightarrow\) HD = HE (hai cạnh tương ứng)
*Chứng minh IA = IH: Có gì sai không bạn? Vẽ hình ra thấy rõ ràng nó không bằng nhau rồi mà? (đó chính là lí do mình ko để điểm I trong hình bên trên). Nếu đề vẫn đúng thì mình chịu nha!