Rút gọn biểu thức : P = \(\frac{1}{2}-\frac{1}{2}\left(x:\frac{1}{6}-\frac{1}{4}\right)-2\left|3x-2\right|\)
a) \(x\text{ ≥}\frac{2}{3}\) b) \(x< \frac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{x-2}{x+2}-\frac{x+2}{2-x}-\frac{x^2-3x+6}{x^2-4}\right):\left(1-\frac{3}{x-2}\right)\)
\(=\left(\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}-\frac{x^2-3x+6}{\left(x-2\right)\left(x+2\right)}\right)\)\(:\left(\frac{x-2}{x-2}-\frac{3}{x-2}\right)\)
\(=\frac{x^2-4x+4+x^2+4x+4-x^2+3x-6}{\left(x+2\right)\left(x-2\right)}:\frac{x-2-3}{x-2}\)
\(=\frac{x^2+3x+2}{\left(x+2\right)\left(x-2\right)}:\frac{x-5}{x-2}\)
\(=\frac{x^2+x+2x+2}{\left(x+2\right)\left(x-2\right)}:\frac{x-5}{x-2}\).
\(=\frac{x\left(x+1\right)+2\left(x+1\right)}{\left(x+2\right)\left(x-2\right)}.\frac{x-2}{x-5}\)
\(=\frac{\left(x+2\right)\left(x+1\right)}{\left(x+2\right)\left(x-2\right)}.\frac{x-2}{x-5}\)
\(=\frac{x+1}{x-2}.\frac{x-2}{x-5}\)
\(=\frac{x+1}{x-5}\)
.
\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right):\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\left(x\ne-1;x\ne0;x\ne-2\right)\)
\(=\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right):\frac{3x^3-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\left(\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3x+3}{\left(x+1\right)\left(x^2-x+1\right)}\right)\)\(:\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{x^2-x+1-3+3x+3}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+1\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\frac{\left(x+1\right)\left(x+2\right)}{3\left(x^2-x+1\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{\left(x+2\right)^2\left(x+1\right)}{3\left(x^2-x+1\right)^2}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(\left(\frac{1}{x}+1-\frac{3}{x^3+1}-\frac{3}{x^2-x+1}\right)\cdot\frac{3x^2-3x+3}{\left(x+1\right).\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)
\(=\left(\frac{x+1}{x}-\frac{3}{\left(x+1\right).\left(x^2-x+1\right)}+\frac{3.\left(x+1\right)}{\left(x+1\right).\left(x^2-x+1\right)}\right)\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)
\(=\left[\frac{\left(x+1\right)^2.\left(x^2-x+1\right)-3x+3x^2+3x}{x.\left(x+1\right).\left(x^2-x+1\right)}\right]\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)
\(=\left[\frac{x^4+x^3+x+1+3x^2}{x.\left(x+1\right).\left(x^2-x+1\right)}\right]\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)
\(=\frac{3x^4+3x^3+3x+3+9x^2}{x.\left(x+1\right)^2.\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}=\frac{3x^4+3x^3+3x+3+9x^2}{x.\left(x+1\right)^2.\left(x+2\right)}-\frac{2x^3+2x^2-2x-2}{x.\left(x+1\right)^2.\left(x+2\right)}\)
\(=\frac{3x^4+x^3+7x^2+5x+5}{x.\left(x+1\right)^2.\left(x+2\right)}\)
B=\(\frac{3\left(2x^8+5x^6+6x^4+5x^2+2\right)}{x\left(x^2+1\right)\left(2x^4+x^2+2\right)}\)
a) \(x\ge\frac{2}{3}\Rightarrow3x-2\ge0\Rightarrow\left|3x-2\right|=3x-2\)
\(\Rightarrow P=\frac{1}{2}-\frac{1}{2}\left(x:\frac{1}{6}-\frac{1}{4}\right)-2\left(3x-2\right)\)
\(\Rightarrow P=\frac{1}{2}-\frac{1}{2}\left(6x-\frac{1}{4}\right)-6x+4\)
\(\Rightarrow P=\frac{4}{8}-3x+\frac{1}{8}-6x+\frac{32}{8}\)
\(\Rightarrow P=\frac{37}{8}-9x\)
b) \(x< \frac{2}{3}\Rightarrow3x-2< 0\Rightarrow\left|3x-2\right|=2-3x\)
\(\Rightarrow P=\frac{1}{2}-\frac{1}{2}\left(x:\frac{1}{6}-\frac{1}{4}\right)-2\left(2-3x\right)\)
\(\Rightarrow P=\frac{1}{2}-\frac{1}{2}\left(6x-\frac{1}{4}\right)-4+6x\)
\(\Rightarrow P=\frac{4}{8}-3x+\frac{1}{8}-\frac{32}{8}+6x\)
\(\Rightarrow P=\frac{-27}{8}+3x\)