Tìm x , y biết
( x- 3,5 )2 + ( y - \(\frac{1}{10}\))4 < hoặc = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất: \(a^{2n}+b^{2m}=0\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\)(2n và 2m là các số chẵn)
haiz` khó phết đấy chứ k phải dễ đâu m` là HSG lớp 8 mà ko hiểu j cả ~~~
Nếu đây là câu lớp 8 thì dễ hơn, biến đổi ra hằng đẳng thức là được
Bài làm:
Ta có: \(\hept{\begin{cases}\left(x-3,5\right)^2\ge0\\\left(y-\frac{1}{10}\right)^2\ge0\end{cases}\left(\forall x,y\right)}\)
=> \(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^2\ge0\left(\forall x,y\right)\) , mà theo đề bài:
\(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^2\le0\) nên dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x-3,5\right)^2=0\\\left(y-\frac{1}{10}\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{7}{2}\\y=\frac{1}{10}\end{cases}}\)
Ta có :
\(\left(x-3,5\right)^2\ge0\forall x\)
\(\left(y-\frac{1}{10}\right)^4\ge0\forall y\)
a)Nhận xét:
\(x^2;\left(y+\frac{1}{10}\right)^4\ge0\) nên tổng chúng bằng 0 khi cả 2 bằng 0
<=> \(x=0;y=-\frac{1}{10}\)
b) \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\) nên không tìm được giá trị x và y thoả mãn đề bài.
a)Như ta đã thấy:
\(x^2;\left(y+\frac{1}{10}\right)^4\ge0\) Nên tổng trên = 0 khi 2 số hạng bằng 0
=> x= 0 và y = -1/10
b) vì:
\(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)
Ta có : \(\hept{\begin{cases}\left(x-3,5\right)^2\ge0;\forall x\\\left(y-\frac{1}{10}\right)^4\ge0;\forall y\end{cases}\Rightarrow}\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^4\ge0;\forall x,y\)
Mà \(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^4\le0\)( theo đề bài )
\(\Rightarrow\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-3,5\right)^2=0\\\left(y-\frac{1}{10}\right)^4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3,5\\y=\frac{1}{10}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=3,5\\y=\frac{1}{10}\end{cases}}\)