K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

A B C O X Y Z W

Dựng hình bình hành OZWY. Ta có YW = OZ = AB và ^WYO = 1800 - ^YOZ = ^BAC

Xét \(\Delta\)ABC và \(\Delta\)YWO: AB = OZ, AC = YO, ^BAC = ^WYO => \(\Delta\)ABC = \(\Delta\)YWO (c.g.c)

Suy ra ^ACB = ^YOW (2 góc tương ứng). Vì ^ACB + ^XOY = 1800 nên ^YOW + ^XOY = 1800

Suy ra X,O,W thẳng hàng. Theo tính chất hình bình hành thì WO chia đôi YZ

Do đó XO cũng chia đôi YZ. Chứng minh tương tự YO chia đôi ZX, ZO chia đôi XY

Vậy thì O là trọng tâm của tam giác XYZ (đpcm).

* Bài toán tổng quát: Cho tam giác ABC. Một điểm O bất kì nằm trong tam giác. Trên đường thẳng qua O vuông góc BC,CA,AB lần lượt lấy các điểm X,Y,Z sao cho \(\frac{OX}{BC}=\frac{OY}{CA}=\frac{OZ}{AB}=k\). Khi đó O là trọng tâm của tam giác XYZ.

Phép chứng minh cũng tương tự như bài toán vừa rồi.

28 tháng 7 2019

Cảm ơn nhé

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

27 tháng 6 2016

hiuhiu

12 tháng 7 2023

Mày nhìn cái chóa j