Cho tam giác ABC. Một điểm O bất kì nằm trong tam giác. Qua O kẻ đường thẳng Õ vuông góc với Bc sao cho OX=BC. Tương tự xác định Y,Z. Chứng minh rằng O là trọng tâm tam giác XYZ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựng hình bình hành OZWY. Ta có YW = OZ = AB và ^WYO = 1800 - ^YOZ = ^BAC
Xét \(\Delta\)ABC và \(\Delta\)YWO: AB = OZ, AC = YO, ^BAC = ^WYO => \(\Delta\)ABC = \(\Delta\)YWO (c.g.c)
Suy ra ^ACB = ^YOW (2 góc tương ứng). Vì ^ACB + ^XOY = 1800 nên ^YOW + ^XOY = 1800
Suy ra X,O,W thẳng hàng. Theo tính chất hình bình hành thì WO chia đôi YZ
Do đó XO cũng chia đôi YZ. Chứng minh tương tự YO chia đôi ZX, ZO chia đôi XY
Vậy thì O là trọng tâm của tam giác XYZ (đpcm).
* Bài toán tổng quát: Cho tam giác ABC. Một điểm O bất kì nằm trong tam giác. Trên đường thẳng qua O vuông góc BC,CA,AB lần lượt lấy các điểm X,Y,Z sao cho \(\frac{OX}{BC}=\frac{OY}{CA}=\frac{OZ}{AB}=k\). Khi đó O là trọng tâm của tam giác XYZ.
Phép chứng minh cũng tương tự như bài toán vừa rồi.