K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2014

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

10 tháng 12 2014

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
$A=2^1+2^2+2^3+2^4$

$2A=2^2+2^3+2^4+2^5$

$\Rightarrow 2A-A=2^5-2^1$

$\Rightarrow A=2^5-1=32-1=31$

----------------------------

$B=3^1+3^2+3^3+3^4$

$3B=3^2+3^3+3^4+3^5$

$\Rightarrow 3B-B = 3^5-3$

$\Rightarrow 2B = 3^5-3\Rightarrow B = \frac{3^5-3}{2}$

--------------------------

$C=5^1+5^2+5^3+5^4$

$5C=5^2+5^3+5^4+5^5$

$\Rightarrow 5C-C=5^5-5$

$\Rightarrow C=\frac{5^5-5}{4}$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 2: Sai đề bạn nhé. Bạn xem lại.

11 tháng 12 2017

Câu b, chuyển 3^2010 thành 2^2010 nhé!

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

2 tháng 12 2015

 ( 2+ 2) + ( 2+ 2) + ... + ( 22009 + 22010 )

= 2. ( 1 + 2 ) + 2. ( 1 + 2 ) + ... + 22009 . ( 1 + 2 )

= 3 . ( 2 + 2+ ... + 22009 ) chia hết cho 3. => ĐPCM

 

 

Bài 2:

1: \(2A=2+2^2+...+2^{2011}\)

=>\(A=2^{2011}-1>B\)

2: \(A=\left(2010-1\right)\left(2010+1\right)=2010^2-1< B\)

3: \(A=1000^{10}\)

\(B=2^{100}=1024^{10}\)

mà 1000<1024

nên A<B

5: \(A=3^{450}=27^{150}\)

\(B=5^{300}=25^{150}\)

mà 27>25

nên A>B

31 tháng 12 2022

b: B=3(1+3)+3^3(1+3)+...+3^2009(1+3)

=4(3+3^3+...+3^2009) chia hết cho 4

B=3(1+3+3^2)+3^4(1+3+3^2)+...+3^2008(1+3+3^2)

=13(3+3^4+...+3^2008) chia hết cho 13

c: \(C=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)

\(C=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)

\(=31\left(5+5^4+...+5^{2008}\right)⋮31\)

d: \(D=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{2009}\left(1+7\right)\)

\(=8\left(7+7^3+...+7^{2009}\right)⋮8\)

\(D=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)

\(=57\left(7+7^4+...+7^{2008}\right)⋮57\)

12 tháng 3 2020

+) C=5+52+53+54+....+52010

<=> C=(5+52)+(53+54)+.....+(52009+52010)

<=> C=5(1+5)+53(1+5)+....+52009(1+5)

<=> C=5 x 6 +53 x 6+....+52009 x 6

<=> C=6(5+53+....+52009)

=> C chia hết cho 6 (đpcm)

+) C=5+52+53+54+....+52010

<=> C=(5+52+53)+(54+55+56)+....+(52008+52009+52010)

<=> C=5(1+5+25)+54(1+5+25)+....+52008(1+5+25)

<=> C=5 x 31+54x31 +....+52008 x 31

<=> C=31(5+54+....+52008)

=> C chia hết cho 31 (đpcm)

12 tháng 3 2020

+) D=7+72+73+74+....+72010

<=> D=(7+72)+(73+74)+....+(72009+72010)

<=> D=7(1+7)+73(1+7)+....+72009(1+7)

<=> D=7 x 8 +73 x 8 +....+72009 x 8

<=> D=8(7+73+....+72009)

+) D=7+72+73+74+....+72010

<=> D=(7+72+73)+(74+75+76)+....+(72008+72009+72010)

<=> D=7(1+7+49)+74(1+7+49)+....+72008(1+7+49)

<=> D=7 x 57 +74 x 57+....+72008 x 57

<=> D=57(7+74+...+72008)

=> D chia hết cho 57 (đpcm)