Xác định số nguyên x lớn nhất và nhỏ nhất thỏa mãn:
\(\left|x-1\right|\le2019\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(\Leftrightarrow-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{12}{12}-\frac{6}{12}+\frac{4}{12}-\frac{3}{12}\)
\(\Leftrightarrow-\frac{17}{21}.\frac{20}{17}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x< \frac{1}{84}\)
\(\Leftrightarrow-\frac{80}{84}< x< \frac{1}{84}\)
\(\Leftrightarrow-80< x< 1\Leftrightarrow x\in\left\{-79;-78;...;0\right\}\)
mà để Giá trị nguyên lớn nhất của x
\(\Rightarrow x=-1\)
Ta thấy x=5; x=6 là nghiệm của pt
Xét những trường hợp còn lại
TH1: \(x<5\Rightarrow\left(x-6\right)^{10}>1;\left(x-5\right)^8>0\Rightarrow VT>1\)(vô nghiệm)
TH2:\(x>6\Rightarrow\left(x-5\right)^8>1;\left(x-6\right)^{10}>0\Rightarrow VT>1\)(vô nghiệm)
Th3:\(x\in\left\{5;6\right\}\Rightarrow x-5\in\left\{0;1\right\}\Rightarrow\left(x-5\right)^8<\backslash x-5\backslash=x-5\)
\(x\in\left\{5;6\right\}\Rightarrow x-6\in\left\{-1;0\right\}\Rightarrow\left(x-6\right)^{10}<\backslash x-6\backslash=6-x\)
Cộng 2 vế trên \(\Rightarrow VT<6-x+x-5=1\)
pt vô nghiệm
Vậy tập nghiệm của pt là \(S=\left\{5;6\right\}\)
Nghiệm nguyên dương nhỏ nhất là 5
A = x +y +1 => A - 1 = x +y.
Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0
=> (A +1)(A +4) <= 0 => - 1 <= A <= -4
A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1
A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4
Vậy minA = -1 khi x = -1, y = 0
maxA = -4 khi x = -4, y = 0
Ta có:
\(A=\sqrt{4\sqrt{x}-x}\) (ĐK: \(16\ge x\ge0\))
Mà: \(\sqrt{4\sqrt{x}-x}\ge0\forall x\)
Dấu "=" xảy ra:
\(4\sqrt{x}-x=0\)
\(\Leftrightarrow4\sqrt{x}-\left(\sqrt{x}\right)^2=0\)
\(\Leftrightarrow\sqrt{x}\left(4-\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\4-\sqrt{x}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Vậy: \(A_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Ta thấy
\(\left|x-1\right|\le2019\)\(\Leftrightarrow\orbr{\begin{cases}x-1\le2019\\x-1\ge-2019\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x\le2020\\x\ge-2018\end{cases}}\)
Vậy số nguyên lớn nhất tm là 2020
số nguyên nhỏ nhất thỏa mãn là -2018