K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

\(a,3^n.3^2=243\\ \Leftrightarrow3^{n+2}=3^5\\ \Leftrightarrow n+2=5\\ \Leftrightarrow n=3\)

\(b,25< 5^n< 3125\\ \Leftrightarrow5^2< 5^n< 5^5\\ \Leftrightarrow2< n< 5\\ \Rightarrow n=\left\{3;4\right\}\)

13 tháng 9 2020

a) \(2^n:4=16\Rightarrow2^n:2^2=2^4\Rightarrow2^{n-2}=2^4\Rightarrow n-2=4\Rightarrow n=6\)

b) \(6\cdot2^n+3\cdot2^n=9\cdot2^9\)

=> \(\left(6+3\right)\cdot2^n=9\cdot2^9\)

=> \(9\cdot2^n=9\cdot2^9\Rightarrow n=9\)

c) \(3^n:3^2=243\)

=> \(3^{n-2}=3^5\)

=> n - 2 = 5 => n = 7

d) 25 < 5n < 3125

=> 52 < 5n < 55

=> n \(\in\){3;4}

a: \(\Leftrightarrow2^5\ge2^n>2^2\)

=>2<n<=5

hay \(n\in\left\{3;4;5\right\}\)

b: \(\Leftrightarrow3^2\cdot3^3\le3^n\le3^5\)

=>5<=n<=5

=>n=5

27 tháng 7 2018

\(a,2^n=16\Leftrightarrow2^n=2^4\Leftrightarrow n=4\)

\(3^n=243\Rightarrow3^n=3^5\Leftrightarrow n=5\)

\(b,4^n=4096\Rightarrow4^n=4^6\Leftrightarrow n=6\)

\(5^n=15625\Rightarrow5^n=5^6\Leftrightarrow n=6\)

\(c,6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Leftrightarrow n=0\)

\(4^{n-1}=1024\Rightarrow4^{n-1}=4^5\Rightarrow n-1=5\Leftrightarrow n=6\)

27 tháng 7 2018

\(a.\)  \(2^n=16\Rightarrow2^n=2^4\Leftrightarrow n=4\)

        \(3^n=243\Rightarrow3^n=3^5\Leftrightarrow n=5\)

\(b.\)   \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)

           \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)

\(c.\)   \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)

         \(4^{n-1}=1024\Rightarrow4^{n-1}=4^5\Rightarrow n-1=5\Rightarrow n=6\)

    

27 tháng 7 2023

Bài 6 :

a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)

b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)

c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)

d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)

27 tháng 7 2023

Bài 7 :

a) \(3^x+3^{x+2}=9^{17}+27^{12}\)

\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)

\(\Rightarrow10.3^x=3^{34}+3^{36}\)

\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)

\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)

b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)

\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)

\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)

c) Bài C bạn xem lại đề

d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)

\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)

\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)

\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)

\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)

\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)

30 tháng 9 2019

a,     2^n =32

<=> 2^n  = 2^5

=>       n=5