Tìm các cặp số nguyên thỏa mãn (x;y) thỏa mãn \(2x^2+1=y\left(y-x^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy-x-2y=21\)
\(\Rightarrow x\left(y-1\right)=21+2y\)
\(\Rightarrow x=\dfrac{2y+21}{y-1}\)
Vì \(x\) là số nguyên nên \(\left(2y+21\right)⋮\left(y-1\right)\)
\(\Rightarrow\left(2y-2+23\right)⋮\left(y-1\right)\)
\(\Rightarrow23⋮\left(y-1\right)\)
\(\Rightarrow y-1\inƯ\left(23\right)\)
\(\Rightarrow y-1\in\left\{1;-1;23;-23\right\}\)
\(\Rightarrow y\in\left\{2;0;24;-22\right\}\)
\(\Rightarrow x\in\left\{25;-21;3;1\right\}\)
-Vậy các cặp số \(\left(x;y\right)\) là \(\left(2;25\right)\), \(\left(0;-21\right)\), \(\left(24;-21\right)\), \(\left(-22;1\right)\).
=>x(2y+1)-3y-1,5=2,5
=>(y+0,5)(2x-3)=2,5
=>(2y+1)(2x-3)=5
=>\(\left(2x-3;2y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;2\right);\left(4;0\right);\left(1;-3\right);\left(-1;-1\right)\right\}\)
\(2xy+x-3y=4\)
\(\Leftrightarrow4xy+2x-6y=8\)
\(\Leftrightarrow4xy+2x-6y-3=5\)
\(\Leftrightarrow2x\left(2y+1\right)-3\left(2y+1\right)=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2y+1\right)=5\)
2x-3 | -5 | -1 | 1 | 5 |
2y+1 | -1 | -5 | 5 | 1 |
x | -1 | 1 | 2 | 4 |
y | -1 | -3 | 2 | 0 |
Vậy pt có các cặp nghiệm nguyên \(\left(x;y\right)=\left(-1;-1\right);\left(1;-3\right);\left(2;2\right);\left(4;0\right)\)
\(x^2-xy+y+1=0\)
\(\Leftrightarrow\left(x^2-1\right)-y\left(x-1\right)+2=0\)
\(\Leftrightarrow\left(x+1-y\right)\left(x-1\right)=-2\)
\(\Rightarrow x-1;x+1-y\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)
x - 1 | 1 | -1 | 2 | -2 |
x + 1 - y | 2 | -2 | 1 | -1 |
x | 2 | 0 | 3 | -1 |
y | 1 | 3 | 3 | 1 |
bảng mình xét nhầm nhé phải là như này :
x - 1 | 1 | -1 | 2 | -2 |
x + 1 - y | -2 | 2 | -1 | 1 |
x | 2 | 0 | 3 | -1 |
y | 5 | -1 | 5 | 1 |
\(\Leftrightarrow y\left(x-2\right)+\left(x-2\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)\left(y+1\right)=1\)
TH1:
\(\left\{{}\begin{matrix}x-2=1\\y+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}x-2=-1\\y+1=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy (x;y) = (3;0); ( 1;-2)
\(\Leftrightarrow\left(x^2-1\right)-\left(xy+y\right)=3\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)-y\left(x+1\right)=3\)
\(\Leftrightarrow\left(x+1\right)\left(x-y-1\right)=3\)
Ta có bảng sau:
x+1 | -3 | -1 | 1 | 3 |
x-y-1 | -1 | -3 | 3 | 1 |
x | -4 | -2 | 0 | 2 |
y | -4 | 0 | -4 | 0 |
Vậy \(\left(x;y\right)=\left(-4;-4\right);\left(-2;0\right);\left(0;-4\right);\left(2;0\right)\)
Có:
\(2x^2+1=y^2-yx^2\)
<=> \(x^2\left(y+2\right)=\left(y-1\right)\left(y+1\right)\)
=> \(x^2\left(y+2\right)⋮\left(y+1\right)\)mà y+1 và y+2 là hai số nguyên liên tiếp nên nguyên tố cùng nhau
=> \(x^2⋮\left(y+1\right)\)
Đặt: \(x^2=\left(y+1\right)t\)( t thuộc Z)
Ta có phương trình : \(t\left(y+2\right)=y-1\)
,+) Với y=-2 => y+2 =0 => y-1 =0 => y=1 vô lí
+) Với y khác -2
Chia ca hai vế cho y+2 ta có:
\(t=\frac{y-1}{y+2}=1-\frac{3}{y+2}\)
Tìm y để t thuộc Z
Ta có: y+2 thuộc U(3)={-3; -1; 1; 3}
+) y+2 =-3 => y=-5 => t=2 => x^2 =(y+1)t= -8 ( loại)
+) y+2 =-1 => y=-3 => t=2 => x^2 =(y+1)t= -4 ( loại)
+) y+2=1 => y=-1 => t=-2 => x^2= 0 => x=0
+) y+2 =3 => y=1 => t=0 => x^2 =0 => x=0
THử lại thấy x=0; y=1 và x=0 ;y=-1 thỏa mãn
Vậy ...