CHo tam giác ABC vuong cân tai A, dường cao AH. Qua A vẽ dường thẳng xy không cắt BC. VẼ BE và CF cùng vuông góc xy. Chứng minh
a EF= BE+CF
b Tam giác HEF vuông cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2 tam giác = nhau theo trường hợp cạnh huyền góc nhọn
b) Cx tam giác = nhau, nhiều cách
c) AH là p/giác góc A => 2 tam giác = nhau (tự chứng minh)
d) dựa vào tất cả kiến thức đã học để chứng minh
Đặng Thanh Thảo : nếu bạn gợi ý đáp án thì ít ra cx phải chi tiết hơn chứ . nói thế bạn ra đề cx bó tay .
a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
mà AB=AC
nên AD=AE
hay ΔADE cân tại A
b: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có
BD=CE
\(\widehat{BDM}=\widehat{CEN}\)
Do đó: ΔMBD=ΔNCE
c: Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
d: Ta có: IB=IC
nên I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AI là đường trung trực của BC
Ta có: ΔABC cân tại A
mà AI là đường trung trực
nên AI là tia phân giác của góc BAC
athui mình bít vẽ oy
đọc sai đề bại
a) xét tam giác abe vuông tại e và tam giác acf vuông tại f có
ab=ac(....)
góc a chung
=> tam giác abe = tam giác acf (ch-gn)
=> be=cf( 2 cạnh tương ứng )
b) có tam giác abe = tam giác acf ( cm câu a )
=> góc abe = góc acf ( 2 góc tg ứng ) (1)
lại có tam giác abc cân tại a
=> góc acb = góc abc ( 2)
từ 1 và 2 => góc ebc = góc fcb
=> tam giác hbc cân tại h (...)
=> hb = hc ( ...)
xét tam giác fhb và tam giác ehc có
góc ech = góc fbh (...)
bh=ch (cmt)
góc fhb = góc ehc ( 2 góc đđ)
=> tam giác fhb = tam giác ehc ( g-c-g)
=> hf=he( 2 cạnh tương ứng)
=> tam giác hfe cưn tại h (...)
tự kẻ hình nha
a) xét tam giác ACF và tam giác ABE có
góc A chung
AB=AC(gt)
AFC=AEB(=90 độ)
=> tam giác ACF= tam giác ABE(ch-gnh)
CF=BE(hai cạnh tương ứng)
b) từ tam giác ACF= tam giác ABE=> AF=AE(hai cạnh tương ứng)
xét tam giác AFH và tam giác AEH có
AF=AE(cmt)
AFH=AEH(=90 độ)
AH chung
=> tam giác AFH= tam giác AE(ch-cgv)
=> FH=EH( hai cạnh tương ứng)
=> tam giác FHE cân H
c) vì AF=AE=> tam giác AFE cân A=> AFE=AEF=180-FAE/2
vì tam giác ABC cân A=> ABC=ACB=180-BAC/2
=> AFE=ACB mà AFE đồng vị với ACB => EF//BC
d) từ tam giác AFH= tam giác AEH=> A1=A2( hai góc tương ứng)
đặt O là giao điểm của AH và EF
xét tam giác AFO và tam giác AEO có
AF=AE(cmt)
A1=A2(cmt)
AO chung
=> tam giác AFO=tam giác AEO (cgc)
=> AOF=AOC( hai góc tương ứng)
mà AOF+AOC=180 độ( kề bù)
=> AOF=AOC=180/2= 90 độ=> AH vuông góc với EF
a) Xét \(\Delta ABC\)và\(\Delta ADE\):
AB=AD(gt)
\(\widehat{BAC}=\widehat{DAE}=90^o\)
AC=AE(gt)
=> \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)
=> BC=DE ( 2 cạnh tương ứng)
=> Đpcm
b) Ta có \(\Delta ABD\)vuông cân tại A
=> \(\widehat{ABD}=\widehat{ADB}=\frac{\widehat{DAB}}{2}=\frac{90^o}{2}=45^o\)
\(\Delta AEC\)vuông cân tại A
=> \(\widehat{AEC}=\widehat{ACE}=\frac{\widehat{EAC}}{2}=\frac{90^o}{2}=45^o\)
=> \(\widehat{BDA}=\widehat{ECA}=45^o\)
Mà 2 góc này ở vị trí so le trong
=> BD//CE
=> Đpcm
c) Sửa đề: Kẻ dường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua A và vuông góc với MC cắt BC tại N. Chứng minh rằng CA vuông góc với NM
Gọi giao điể của NA và MC là I
Xét \(\Delta NMC\)có:
\(\hept{\begin{cases}NI\perp MC\\MH\perp NC\end{cases}}\)
Mà 2 đường cao này cắt nhau tại A
=> A là trực tâm của \(\Delta MNC\)
=> \(CA\perp NM\)
=> Đpcm
d) Ta có: \(\widehat{ADM}=\widehat{ABC}\left(\Delta ADE=\Delta ABC\right)\)
=> \(\widehat{ADM}+\widehat{AED}=\widehat{ABC}+\widehat{BAH}=90^o\)
=> \(\widehat{AED}=\widehat{BAH}\) Mà \(\widehat{BAH}=\widehat{MAE}\left(đđ\right)\)
=> \(\widehat{AED}=\widehat{MAE}\)
=> \(\Delta MAE\)cân tại M
=> MA=ME (1)
Lại có: \(\widehat{AED}=\widehat{ACB}\Rightarrow\widehat{AED}+\widehat{ADE}=\widehat{ACB}+\widehat{CAH}=90^o\)
=> \(\widehat{ADE}=\widehat{CAH}\)
Mà \(\widehat{CAH}=\widehat{DAM}\left(đđ\right)\)
=> \(\widehat{ADE}=\widehat{DAM}\)
=> \(\Delta DAM\)cân tại M
=> MD=MA (2)
Từ (1) và (2)
=> MA=MD=ME
=> \(MA=\frac{1}{2}DE\)
=> Đpcm
P/s: Thật ra định làm tắt cho bạn tự suy luận, nhưng sợ bạn ko hiểu nên thoi, mỏi cả tay:>>>