\(Cho\)\(A=\frac{2}{1-4}+\frac{2}{4-7}+...+\frac{2}{97-100}\)
TÍnh tổng A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2}{3}\left[\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\right]\)
\(A=\frac{2}{3}\left[\left[\frac{1}{1}-\frac{1}{4}\right]+\left[\frac{1}{4}-\frac{1}{7}\right]+...+\left[\frac{1}{97}-\frac{1}{100}\right]\right]\)
\(A=\frac{2}{3}\left[\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right]\)
\(A=\frac{2}{3}\left[1-\frac{1}{100}\right]=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
AI THẤY ĐÚNG ỦNG HỘ MIK NHÉ
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+..........+\frac{2}{97.100}=\frac{3}{2}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........-\frac{1}{100}\right)\)
\(=\frac{3}{2}\times\frac{99}{100}=\frac{297}{200}\)
Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)
\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)
\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)
\(\Rightarrow6A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)
\(B=\frac{1}{99}+\frac{2}{98}+...+\frac{99}{1}\)
\(B=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)
\(B=99+\frac{98}{2}+...+\frac{1}{99}\)
\(B=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
(số hạng 99 chia thảnh 99 số 1 cộng vào từng phân số còn dư 1 số 1 để ngoài)
\(B=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)
\(B=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Và \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)
\(\Rightarrow\frac{B}{A}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}\)
\(\Rightarrow\frac{B}{A}=100\)
b/a = 100. Nếu k đúng cho mình, Mình sẽ trình bày cách làm cho bạn.
sao lại lấy ảnh của tui.
bài cậu hỏi tôi làm rồi đó
nhớ ****
A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102
=1+0+0+....+102=103
b) |1-2x|>7
=> 1-2x>7 hoặc 1-2x<-7
=> 2x<-6 hoặc 2x>8
=> x<-3 hoặc x>4
\(A=\frac{2}{1-4}+\frac{2}{4-7}+...+\frac{2}{97-100}\)
\(\Rightarrow A=\frac{2}{-3}+\frac{2}{-3}+...+\frac{2}{-3}\)
\(\Rightarrow A=\frac{2}{-3}.97=\frac{-194}{3}\)
Nếu đề bài đúng:
Bài làm:
Xét dãy số: 1,4,7,...97
Dãy số trên có số số hạng là: \(\frac{97-1}{3}+1=33\)
\(A=\frac{2}{-3}+\frac{2}{-3}+\frac{2}{-3}+...+\frac{2}{-3}=33.\frac{2}{-3}=-22\) có 33 số -2/3
Nếu đề bài sai
\(A=\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{97.100}\)
\(A.3:2=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\)
\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+...+\frac{100-97}{100.97}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(1-\frac{1}{100}=\frac{99}{100}\)
=> \(A=\frac{99}{100}.2:3=\frac{33}{50}\)