K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

Sửa đề: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2\Leftrightarrow\left(a-b\right)^2\ge0\left(\text{đúng}\right)\)

Đẳng thức xảy ra khi a = b

22 tháng 9 2020

\(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

VT : (a + b + c)2 + a2 + b2 + c2

= a2 + b2 + c2 + 2ab +2bc + 2ac + a2 + b2 + c2

= ( a2 + 2ab + b2 ) + (b2 + 2bc + c2) + ( a2 + 2ac + c2)

= (a + b)2 + (b + c)2 + (a + c)2 = VP

Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)(đpcm)

18 tháng 2 2023

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)

\(\Leftrightarrow a^2+2ab+b^2-2a^2-2b^2\le0\)

\(\Leftrightarrow-a^2+2ab-b^2\le0\)

\(\Leftrightarrow-\left(a-b\right)^2\le0\) ( dấu "=" xảy ra ⇔ a=b )

7 tháng 12 2021

Áp dụng BĐT cosi:

\(\left(2+a+b\right)\left(a+4b+ab\right)\ge3\sqrt[3]{2ab}\cdot3\sqrt[3]{4a^2b^2}=9\sqrt[3]{8a^3b^3}=9\cdot2ab=18ab\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=b=2\\a=4b=ab\end{matrix}\right.\left(\text{vô lí}\right)\)

Vậy dấu \("="\) ko xảy ra hay \(\left(2+a+b\right)\left(a+4b+ab\right)>18ab\)

15 tháng 1 2021

Bất đẳng thức cần chứng minh tương đương:

\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).

Vậy ta có đpcm.

 

15 tháng 1 2021

bạn trình bày rõ ra vì sao lại có suy ra thứ 2 vậy. Giải thik cho mk đc ko Sigma CTV

14 tháng 1 2018

Làm thông thường thoy; khai triển ra xog chuyển vế

\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)

\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)

\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)

\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)

\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))

Vậy bđt đã đc chứng minh

14 tháng 1 2018

cảm ơn nhiều nha. chúng ta kết bạn được không?

\(\Leftrightarrow2a^3+2b^3-a^3-ab^2-a^2b-b^3>=0\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b>=0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)>=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2>=0\)(luôn đúng)

23 tháng 7 2019

Sửa đề: Chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

Cách 1: Áp dụng BĐT Bunhiacopxki ta có đpcm.

Cách 2:BĐT \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (đúng)

Ta có đpcm.

Đẳng thức xảy ra khi a = b= c

AH
Akai Haruma
Giáo viên
23 tháng 3 2017

Lời giải:

BĐT tương đương với \((a^2+ab+ac)(a^2+ac+ab+bc)+b^2c^2\geq 0\)

Đặt \(a^2+ab+ac=t\)

BĐT cần chứng minh \(\Leftrightarrow t(t+bc)+b^2c^2=(t-\frac{bc}{2})^2+\frac{3b^2c^2}{4}\geq 0\)

Luôn đúng vì bình phương của một số thực luôn là số không âm

Dấu bằng xảy ra khi \(2(a^2+ab+ac)=bc\)\(bc=0\)

29 tháng 1 2019

Sửa đề: a,b,c,d>0

C/m: \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(c+d\right)\)

Áp dụng BĐT AM-GM ta có:

\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2=\left[\frac{\left(a+c\right)+\left(b+d\right)}{2}\right]^2\ge\left[\frac{2.\sqrt{\left(a+c\right)\left(b+d\right)}}{2}\right]^2=\left(a+c\right)\left(b+d\right)\)

Dấu " = " xảy ra <=> a+c=b+d

18 tháng 4 2018

ta có : \(\left(a-1\right)^2\ge0\forall a\Rightarrow a^2-2a+1\ge0\Rightarrow a^2+1\ge2a\left(1\right)\)

\(\left(b-1\right)^2\ge0\forall b\Rightarrow b^2+1\ge2b\left(2\right)\)

Lấy (1)+(2) ta có :  \(a^2+1+b^2+1\ge2a+2b\forall a,b\)

\(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\forall a,b\)

16 tháng 6 2020

Theo BĐT AM - GM :

\(a^2+1\ge2\sqrt{a^2}=2\left|a\right|=2a\)

\(b^2+1\ge2\sqrt{b^2}=2\left|b\right|\ge2b\)

Khi đó ta có đpcm