K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

Áp dụng BĐT Bunhicopxki:

\(\left(\sqrt{\frac{1}{2}}^2+\sqrt{\frac{4}{3}}^2\right)\left(\left(\sqrt{2}x\right)^2+\left(\sqrt{3}y\right)^2\right)\ge\left(x+2y\right)^2\)

\(\Leftrightarrow\frac{11}{6}\left(2x^2+3y^2\right)\ge\left(x+2y\right)^2\)

\(\Leftrightarrow\frac{44}{6}=\frac{22}{3}\ge\left(x+2y\right)^2\)(1)

Do x, y > 0 nên x + 2y > 0 do đó từ (1) suy ra \(x+2y\le\sqrt{\frac{22}{3}}\)(đpcm)

24 tháng 4 2020

Bài 1 : 

Bât đẳng thức cần chứng minh tương đương với :

( xy+yz + zx )(9 + x2y2 +z2y2 + x2z2 ) \(\ge\)36xyz 

Áp dụng bất đẳng thức Côsi ta có : 

xy+ yz + zx \(\ge3\sqrt[3]{x^2y^2z^2}\)           ( 1) 

Và 9 + x2y2 + z2y2 + x2z2 \(\ge12\sqrt[12]{x^4y^4z^4}\)

hay 9+ x2y2 + z2y2+ x2z2 \(\ge12\sqrt[3]{xyz}\)                (2) 

Do các vế đều dương ,từ (1) và (2) suy ra :

( xy + yz +zx )( 9+ x2y2 + z2y2 + x2z2 ) \(\ge36xyz\left(đpcm\right)\)

Dấu đẳng thức xảy ra khi và chỉ khi x = y  =z = 1 

Bài 2: 

\(\hept{\begin{cases}a;b;c>0\\ab+bc+ca=1\end{cases}}\)

Có : \(\hept{\begin{cases}\sqrt{1+a^2}\ge\sqrt{2a}\Rightarrow\frac{a}{\sqrt{1+a^2}}\le\frac{\sqrt{3}}{2}a\\\sqrt{1+b^2}\ge\sqrt{2b}\Rightarrow\frac{b}{\sqrt{1+b^2}}\le\frac{\sqrt{3}}{2}b\\\sqrt{1+c^2}\ge\sqrt{2c}\Rightarrow\frac{c}{\sqrt{1+c^2}}\le\frac{\sqrt{3}}{2}c\end{cases}}\)

=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{\sqrt{3}}{2}\left(a+b+c\right)\le\frac{\sqrt{3}}{2}.\frac{\sqrt{3}}{2}\left(ab+bc+ca\right)\)

=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{3}{2}\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi a =b =c = \(\frac{1}{\sqrt{3}}\)

22 tháng 7 2019

\(x+2y=\sqrt{\left(\frac{1}{\sqrt{2}}.\sqrt{2}x+\frac{2}{\sqrt{3}}.\sqrt{3}y\right)^2}\le\sqrt{\left(\frac{1}{2}+\frac{4}{3}\right)\left(2x^2+3y^2\right)}=\sqrt{\frac{22}{3}}\)

14 tháng 5 2017

bạn xem câu hỏi số 905663 nhé

8 tháng 5 2017

Đề kì vậy bạn. Sao vế trái không có \(y\) vậy?

22 tháng 12 2018

\(VT=\frac{\sqrt{x}}{x^2+y+2y\sqrt{x}}+\frac{\sqrt{y}}{y^2+x+2x\sqrt{y}}\le\frac{\sqrt{x}}{2x\sqrt{y}+2y\sqrt{x}}+\frac{\sqrt{y}}{2y\sqrt{x}+2x\sqrt{y}}\)

\(=\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{1}{2\sqrt{xy}}\)

Có \(2=\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)\(\Leftrightarrow\)\(\frac{1}{2\sqrt{xy}}\le\frac{1}{2}\)

\(\Rightarrow\)\(VT\le\frac{1}{2}\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x^2=y\\y^2=x\\\frac{1}{x}=\frac{1}{y}\end{cases}\Leftrightarrow x=y}\)

... 

31 tháng 5 2020

Theo BĐT Cauchy cho 2 số dương, ta có:

\(2x^2+y^2+5=\left(x^2+y^2\right)+\left(x^2+1\right)+4\ge2\left(xy+x+2\right)\)

\(\Rightarrow\frac{x}{2x^2+y^2+5}\le\frac{x}{2\left(xy+x+2\right)}\)(1)

Tương tự ta có: \(\frac{2y}{6y^2+z^2+6}\le\frac{2y}{4\left(yz+y+1\right)}=\frac{y}{2\left(yz+y+1\right)}\)(2)

\(\frac{4z}{3z^2+4x^2+16}\le\frac{4z}{4\left(zx+2z+2\right)}=\frac{z}{zx+2z+2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{x}{2x^2+y^2+5}+\frac{2y}{6y^2+z^2+6}+\frac{4z}{3z^2+4x^2+16}\)

\(\le\frac{1}{2}\left(\frac{x}{xy+x+2}+\frac{y}{yz+y+1}+\frac{2z}{zx+2z+2}\right)\)

\(=\frac{1}{2}\left(\frac{zx}{xyz+xz+2z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{2z}{zx+2z+2}\right)\)

\(=\frac{1}{2}\left(\frac{zx}{2+xz+2z}+\frac{2}{2z+2+xz}+\frac{2z}{zx+2z+2}\right)\)(Do xyz = 2)

\(=\frac{1}{2}.\frac{zx+2z+2}{zx+2z+2}=\frac{1}{2}\)

Đẳng thức xảy ra khi x = y = 1; z = 2