Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow x^2+y^2+2xy\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\Rightarrow1\ge4xy\Leftrightarrow xy\le\frac{1}{4}\)(1)
\(\left(x-y\right)^2\ge0\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow\left(x+y\right)^2\ge2\Leftrightarrow x+y\ge\sqrt{2}\)
Từ phần a ta có \(x+y\le\sqrt{2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{2x+1}+\sqrt{2y+1}\right)^2\)
\(\le\left(1+1\right)\left(2\left(x+y\right)+2\right)\)
\(=2\cdot\left(2\left(x+y\right)+2\right)\le2\cdot\left(2\sqrt{2}+2\right)\)
\(=4\sqrt{2}+4=VP^2\)
Suy ra \(VT\ge VP\) (ĐPCM)
\(\text{Cho 3 số dương x, y, z thỏa mãn }x+y+z=3\)
\(\text{Chứng minh rằng }T=\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)
➤➤➤Chứng minh:
➢ Áp dụng bất đẳng thức AM - GM
\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}\left(\text{vì }x+y+z=3\right)=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}=\dfrac{x}{x+\sqrt{xz}+\sqrt{xy}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
➢ Tương tự:
\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
\(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
➢ Công vế theo vế 3 bất đẳng thức cùng chiều
\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
➢ \(\text{Đẳng thức xảy ra khi }x=y=z=1\)
➤ \(Max_T=1\Leftrightarrow x=y=z=1\)
VẬy bạn giải ra cho mọi người xem được ko?
Lớn hơn hoặc bằng kí hiệu trong Latex là \geq nha!
Không mất tính tổng quát, ta có thể giả sử \(x\ge y\ge z\).Khi đó:
\(5=x+y+z\le3x\le6\Leftrightarrow\frac{5}{3}\le x\le2\Rightarrow\left(x-1\right)\left(2-x\right)\ge0\)(*)
Mặt khác, vì \(0\le y,z\le2\)nên \(\left(y-2\right)\left(z-2\right)\ge0\Leftrightarrow yz\ge2\left(y+z\right)-4\)
\(\Leftrightarrow yz\ge2\left(5-x\right)-4=6-2x\)
Do đó:
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{3-x+2\sqrt{2}\sqrt{3-x}+2}\)
\(=\sqrt{x}+\sqrt{\left(\sqrt{3-x}+\sqrt{2}\right)^2}=\sqrt{x}+\sqrt{3-x}+\sqrt{2}\)
Vì \(\left(\sqrt{x}+\sqrt{3-x}\right)^2=x+2\sqrt{x\left(3-x\right)}+3-x\)
\(=3+2\sqrt{3x-x^2}=3+2\sqrt{\left(x-1\right)\left(2-x\right)+2}\ge3+2\sqrt{2}\)
\(=\left(\sqrt{2}+1\right)^2\)(vì \(\left(x-1\right)\left(2-x\right)\ge0\)theo (*)) nên \(\sqrt{x}+\sqrt{3-x}\ge\sqrt{2}+1\)
Vậy \(A\ge2\sqrt{2}+1\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}0\le x,y,z\le2;x+y+z=5\\\left(x-1\right)\left(2-x\right)=0\\yz=6-2x\end{cases}}\Leftrightarrow x=y=2;z=1\)
Vậy giá trị nhỏ nhất của A là \(2\sqrt{2}+1\)đạt được khi \(\left(x,y,z\right)=\left(2,2,1\right)\)và các hoán vị
Không mất tính tổng quát, giả sử: \(x\ge y\ge z\). Khi đó:
\(5=x+y+z\le3x\le6\Rightarrow\frac{5}{3}\le x\le2\Rightarrow\left(x-1\right)\left(2-x\right)\ge0\)(*)
Mặt khác, vì \(0\le y,z\le2\)nên \(\left(y-2\right)\left(z-2\right)\ge0\Leftrightarrow yz\ge2\left(y+z\right)-4\)
\(\Leftrightarrow yz\ge2\left(5-x\right)-4=6-2x\)
Do đó: \(A=\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{x}+\sqrt{y+z+2\sqrt{yz}}\)
\(\ge\sqrt{x}+\sqrt{5-x+2\sqrt{6-2x}}=\sqrt{x}+\sqrt{3-x+2\sqrt{2}.\sqrt{3-x}+2}\)
\(=\sqrt{x}+\sqrt{\left(\sqrt{3-x}+\sqrt{2}\right)^2}=\sqrt{x}+\sqrt{3-x}+\sqrt{2}\)
Ta có: \(\left(\sqrt{x}+\sqrt{3-x}\right)^2=x+2\sqrt{x\left(3-x\right)}+3-x=3+2\sqrt{3x-x^2}\)
\(=3+2\sqrt{\left(x-1\right)\left(2-x\right)+2}\ge3+2\sqrt{2}=\left(1+\sqrt{2}\right)^2\)(theo (*))
Do đó \(\sqrt{x}+\sqrt{3-x}\ge1+\sqrt{2}\)
Vậy \(A\ge2\sqrt{2}+1\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}0\le x,y,z\le2;x+y+z=5\\\left(x-1\right)\left(2-x\right)=0\\yz=6-2x\end{cases}}\Leftrightarrow x=y=2;z=1\)
Vậy giá trị nhỏ nhất của A là \(2\sqrt{2}+1\), đạt được khi \(\left(x,y,z\right)=\left(2,2,1\right)\)và các hoán vị.
\(VT=\frac{\sqrt{x}}{x^2+y+2y\sqrt{x}}+\frac{\sqrt{y}}{y^2+x+2x\sqrt{y}}\le\frac{\sqrt{x}}{2x\sqrt{y}+2y\sqrt{x}}+\frac{\sqrt{y}}{2y\sqrt{x}+2x\sqrt{y}}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{1}{2\sqrt{xy}}\)
Có \(2=\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)\(\Leftrightarrow\)\(\frac{1}{2\sqrt{xy}}\le\frac{1}{2}\)
\(\Rightarrow\)\(VT\le\frac{1}{2}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x^2=y\\y^2=x\\\frac{1}{x}=\frac{1}{y}\end{cases}\Leftrightarrow x=y}\)
...