K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`A = n^2(n^4 - 2n^3 + 2n^2 - 2n + 1)` 

Để `A` chính phương thì `n^4 - 2n^3 + 2n^2 - 2n + 1 = a^2 (a in NN)`.

`<=> n^4 -2n^3 + n^2 + n^2- 2n +1 = a^2`

`<=> (n^2+1)(n-1)^2 = a^2`.

Vì `(n-1)^2` chính phương, `a^2` chính phương.

`=> n^2+1` chính phương.

Đặt `n^2+1 = b^2(b in NN)`.

`=> (b-n)(b+n) =1`

Mà `b, n in NN`.

`=> {(b-n=1), (b+n=1):}`

`<=> {(b=1), (n=0):}`

Vậy `n = 0`.

28 tháng 3 2023

Cảm ơn bạn 

9 tháng 8 2021

Bạn tham khảo bài làm ở link dưới này nhé !

Câu hỏi của nguyenthingockim - Toán lớp 6 - Học trực tuyến OLM

12 tháng 8 2016

Vì ( 2n + 5 ) chia hết cho ( n + 1 ) => [ 2n + 5 - 2 ( n + 1 )] chia hết cho ( n + 1 )

=> 3 chia hết cho n + 1

=> n + 1 là ước của 3

với n + 1 = 1 => n = 0

với n + 1 = 3 +> n = 2

Đáp số : n= 0, n = 2

12 tháng 8 2016

2n + 5 chia hết cho n + 1

=> 2n + 2 + 3 chia hết cho n + 1

=> 2.(n + 1) + 3 chia hết cho n + 1

Do 2.(n + 1) chia hết cho n + 1 => 3 chia hết cho n + 1

Mà \(n\in N\)=> \(n+1\ge1\)=> \(n+1\in\left\{1;3\right\}\)

=> \(n\in\left\{0;2\right\}\)

18 tháng 12 2016

ta có 4n+ 7 chia hết cho 2n +1             (1)

2n+ 1 chia hết cho 2n+1

=> 2(2n+1) chia hết cho 2n+1

=> 4n+2 chia hết cho 2n+1           (2)

từ (1) và (2)

=> (4n+7)- (4n+2) chia hết cho 2n+1

=> 4n+7-4n-2 chia hết cho 2n+1

=> 5 chia hết cho 2n+1

vậy 2n+1 thuộc ước của 5

=> 2n+1 = { 1,5,-1,-5}

=> 2n={ 0,4,-2,-6}

=> n={ 0,2,1,-3}

30 tháng 11 2017

ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)