\((\frac{\sqrt{x}}{\sqrt{x}-4}+\frac{4}{\sqrt{x}+4}):\frac{x+16}{\sqrt{x}+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right]:\frac{x+16}{\sqrt{x}+2}\)
\(=\left[\frac{\sqrt{x}\left(\sqrt{x}-4\right)}{x-16}+\frac{4\left(\sqrt{x}+4\right)}{x-16}\right]:\frac{x+16}{\sqrt{x}+2}\)
\(=\left[\frac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}\right].\frac{\sqrt{x}+2}{x+16}\)
\(=\frac{x+16}{x-16}.\frac{\sqrt{x}+2}{x+16}\)
\(=\frac{\sqrt{x}+2}{x-16}\)
\(A=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)
\(=\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\sqrt{\left(1-\frac{4}{x}\right)^2}}=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{1-\frac{4}{x}}\)
- Với \(x\ge8\Rightarrow\sqrt{x-4}-2\ge0\)
\(\Rightarrow A=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\frac{x-4}{x}}=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x}{\sqrt{x-4}}\)
- Với \(4< x\le8\)
\(\Rightarrow A=\frac{\sqrt{x-4}+2+2-\sqrt{x-4}}{\frac{x-4}{x}}=\frac{4x}{x-4}\)
Bằng 1 phép so sánh đơn giản \(\frac{1}{\sqrt{x+1}+1}>\frac{1}{\sqrt{x+100}+10}\) ; \(\forall x\ge-1\)
Ta suy ra luôn pt này vô nghiệm
\(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\frac{16}{\frac{16}{x^2}-\frac{8}{x}+1}}\)\(=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\left(\frac{4}{x}-1\right)^2}\)
\(\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\left(\frac{4}{x}-1\right)^2}\)\(=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\left(\frac{4-x}{x}\right)^2}\)
\(=\frac{2\sqrt{x-4}}{\left(\frac{4-x}{x}\right)^2}=\frac{2x^2\sqrt{x-4}}{\left(x-4\right)^2}=\frac{2x^2}{\sqrt{x-4}^3}\)
bài bạn YIM YIM sai nhé, mk làm lại và chỉnh lại đề luôn, bạn tham khảo:
ĐK: \(x>4\)
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\frac{16}{x^2}-\frac{8}{x}+1}\)
\(=\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\left(1-\frac{4}{x}\right)^2}\)
\(=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{\left(\frac{x-4}{x}\right)^2}\)
Nếu \(4< x\le8\)thì:
\(A=\frac{\sqrt{x-4}+2+2-\sqrt{x-4}}{\left(\frac{x-4}{x}\right)^2}\)
\(=\frac{4x^2}{\left(x-4\right)^2}\)
Nếu \(x>8\)thì:
\(A=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\frac{\left(x-4\right)^2}{x^2}}=\frac{2x^2}{\sqrt{x-4}^3}\)