K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2015

Giả sử p < q

Do (p+q)/2 là trung bình cộng của p và q 

=> p < (p+q)/2 < q          (1)

mà p và q là 2 số nguyên tố liên tiếp nên giữa p và q là các hợp số  (2)

Từ (1) và (2) => (p+q)/2 là hợp số (ĐPCM)

22 tháng 3 2015

Vì p, q nguyên tố > 2 nên p và q là số lẻ

Do đó p + q là số chẵn nên p+q/2 chẵn nên p+q/2 chia hết cho 2

mà 2<p<q nên p+q/2>2 nên p+q/2 là hợp số 

AH
Akai Haruma
Giáo viên
30 tháng 3

Lời giải:
Nếu $p,q,r$ đều không chia hết cho 3. Ta biết rằng 1 scp khi chia 3 chỉ có dư $0$ hoặc $1$.

$\Rightarrow p^2,q^2,r^2$ chia $3$ dư $1$

$\Rightarrow p^2+q^2+r^2$ chia $3$ dư $3$ (hay chia 3 dư 0)

$\Rightarrow p^2+q^2+r^2\vdots 3$

Mà $p^2+q^2+r^2>3$ nên không thể là số nguyên tố (trái với yêu cầu đề bài)

Do vậy tồn tại ít nhất 1 số chia hết cho 3 trong 3 số $p,q,r$. Không mất tính tổng quát, giả sử $p\vdots 3\Rightarrow p=3$.

Vì $p,q,r$ là số nguyên tố liên tiếp nên có thể xảy ra các TH: $(q,r)=(2,5)$ hoặc $(q,r)=(5,7)$

Thử thì thấy $(q,r)=(5,7)$

Vậy $(p,q,r)=(3,5,7)$ và hoán vị.

24 tháng 10

scp là gì

 

14 tháng 4 2023

Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)

* Nếu p=3 => p+2=3+2=5 là số nguyên tố 

                 => p+4=3+4=7 là số nguyên tố

=> p=3 thỏa mãn đề bài

* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)

* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)

Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)

* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)

Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)

Vậy p=3 thỏa mãn đề bài

 

 

NM
2 tháng 10 2021

không mất tổng quát ta giả sử p<q

vì đây là hai số lẻ liên tiếp nên : \(q=p+2\)

do đố ta có : \(2p+2=2n\Leftrightarrow n=p+1\)

do p nguyên tố lẻ nên p+1 là số chẵn nên n là hợp số

4 tháng 11 2016

vì 2 nhân bao nhiêu cũng sẽ là hợp số.Ví dụ:

2 x 3 = 6 (là hợp số)

2 x 5 = 10 (là hợp số)

vậy thì suy ra m là hợp số.

31 tháng 12 2016

A) Gọi 2 số tự nhiên liên tiếp (khác 0) là n và n+1.

Gọi ƯCLN của 2 số trên là a, ta có: n chia hết cho a; n+1 chia hết cho a => n+1-n chia hết cho a hay 1 chia hết cho a => a=1 => n và n+1 nguyên tố cùng nhau.

Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.

31 tháng 12 2016

B) Gọi 2 số lẻ liên tiếp là n và n+2. Gọi a là ƯCLN của n và n+2, ta có:

n chia hết cho a; n+2 chia hết cho a => n+2-n chia hết cho a hay 2 chia hết cho a.

Do n; n+2 lẻ nên a lẻ => a=1 => n và n+2 nguyên tố cùng nhau.

Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.

22 tháng 3 2017

 Giả sử 3 số nguyên tố p, q, r đều không chia hết cho 3 mà một số chính phương chia hết cho 3 hoặc chia 3 dư 1

Nếu p^2, q^2, r^2 chia hết cho 3 suy ra p^2 + q^2 + r^2 chia hết cho 3 ﴾ là hợp số, loại ﴿

Nếu p^2, q^2, r^2 cùng chia 3 dư 1 suy ra p^2 + q^2 + r^2 chia hết cho 3 ﴾ loại ﴿

Nếu trong 3 số có 1 số chia hết cho 3 suy ra p^2 + q^2 + r^2 chia 3 dư 2 ﴾ 2 số còn lại chia 3 dư 1 ﴿ loại

vì không có số chính phương nào chia 3 dư 2

Nếu trong 3 số có 1 số chia 3 dư 1 thì p^2 + q^2 + r^2 chia 3 dư 1 ﴾ 2 số còn lại chia hết cho 3 ﴿ chọn

Vậy trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 mà p, q, r là các số nguyên tố nên có 1 số nhận giá trị là 3.

Do 1 ko là số nguyên tố nên bộ ba số nguyên tố có thể là 2 ‐ 3 ‐ 5 hoặc 3 ‐ 5 ‐ 7

Với 3 số nguyên tố là 2 ‐ 3 ‐ 5 thì p^2 + q^2 + r^2 = 2^2 + 3^2 + 5^2 = 38 ﴾ là hợp số, loại ﴿

Vậy 3 số nguyên tố cần tìm là 3 5 7