K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Bài làm:

Ta có: \(2n\left(16-n^4\right)\)

\(=2n\left(4-n^2\right)\left(4+n^2\right)\)

\(=2n\left(2-n\right)\left(2+n\right)\left(4+n^2\right)\)

\(=-2n\left(n-2\right)\left(n+2\right)\left(4+n^2\right)\)

7 tháng 11 2017

A = n 4   –   2 n 3   –   n 2  +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó  A ⋮ 24 .

27 tháng 9 2023

a, 2n + 3 ⋮ n ( n \(\ne\) 0)

            3 ⋮ n

 n \(\in\) Ư(3) = { -3;  -1; 1; 3}

b,      2n + 16 ⋮ n + 1 ( n \(\ne\) -1)

 2(n + 1) + 14 ⋮ n + 1

                 14 ⋮ n + 1

          n + 1 \(\in\) { -14; -7; -2; -1; 1; 2; 7; 14}

          n       \(\in\) {-15; - 8; -3; -2; 0; 1; 6; 13}

c,         5n + 12  ⋮ n - 3 (n \(\ne\) 3)

    5.(n - 3) + 27 ⋮ n - 3

                     27 ⋮ n -3

        n - 3 \(\in\) {-27; -9; -3; -1; 1; 3; 9; 27}

        n \(\in\) {-24; -6; 0; 2; 6; 12; 30}

       

    

27 tháng 9 2023

a) (2n + 3) ⋮ n khi 3 ⋮ n

⇒ n ∈ {-3; -1; 1; 3}

b) 2n + 16 = 2n + 2 + 14 = 2(n + 1) + 14

Để (2n + 16) ⋮ (n + 1) thì 14 ⋮ (n + 1)

⇒ n + 1 ∈ Ư(14) = {-14; -7; -2; -1; 1; 2; 7; 14}

⇒ n ∈ {-15; -8; -3; -2; 0; 1; 6; 13}

c) Ta có:

5n + 12 = 5n - 15 + 27 = 5(n - 3) + 27

Để (5n + 12) ⋮ (n - 3) thì 27 ⋮ (n - 3)

⇒ n - 3 ∈ Ư(27) = {-27; -9; -3; -1; 1; 3; 9; 27}

⇒ n ∈ {-24; -6; 0; 2; 4; 6; 12; 30}

1 tháng 2 2019

a, Ta có 8n - 59 = ( 2n -16 ) + ( 2n -16 ) + ( 2n - 16 ) + ( 2n - 16 ) + 5

2n - 16 luôn luôn chia hết cho 2n - 16 

=> 4.(2n-16) chia hết cho 2n-16 <=> 5 chia hết cho 2n - 16

=> 2n - 16 thuộc Ư(5) = { 1;-1;5;-5 }

Tự làm nốt

b, tương tự 

c, 6n - 46 = (2n-18) + (2n-18) + (2n-18) + 8

... Tiếp tục :))

1 tháng 2 2019

a ,\(8n-59⋮2n-16\)

Mà \(2n-16⋮2n-16\) 

\(\Rightarrow4\left(2n-16\right)⋮2n-16\)

\(\Rightarrow8n-64⋮2n-16\) 

\(\Rightarrow\left(8n-59\right)-\left(8n-64\right)⋮2n-16\) 

\(\Rightarrow8n-59-8n+64⋮2n-16\) 

\(\Rightarrow5⋮2n-16\) 

\(\Rightarrow2n-16\inƯ\left(5\right)\) 

\(\Rightarrow2n-16\in\left\{\pm1;\pm5\right\}\) 

\(\Rightarrow2n\in\left\{17;15;21;11\right\}\) 

\(\Rightarrow\) KHÔNG CÓ SỐ NÀO THỎA MÃN CỦA 2n 

\(\Rightarrow x\in\varnothing\)