Chứng minh bằng phản chứng: Với các số tự nhiên a, b nếu a^2 + b^2 chia hết cho 8 thì a, b không thể đồng thời là số lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a^2 + b^2 chia hết cho 8 và a , b đồng thời là số lẻ
\(\Rightarrow a=2k+1\) và \(b=2k+1\)
Khi đó: \(a^2+b^2=\left(2k+1\right)^2+\left(2k+1\right)^2\)
\(\Leftrightarrow4k^2+4k+1+4k^2+4k+1\)
\(\Leftrightarrow8k^2+8k+2\)
\(\Leftrightarrow8k\left(k+1\right)+2⋮̸8\) Mâu thuẫn với giả thiết
\(\Rightarrow a^2+b^2⋮8\) , a , b không đồng thời là số lẻ ( đpcm )
a) Giả sử ngược lại rằng a ≥ 1 và b ≥ 1. Ta suy ra a + b ≥ 2.
Điều này mâu thuẫn với giả thiết a + b < 2. Vậy một trong hai số a và b phải nhỏ hơn 1.
b) Giả sử ngược lại rằng n là số tự nhiên chẵn, n = 2k (k ∈ N). Khi đó 5n + 4 = 10k + 4 = 2(5k + 2) là một số chẵn. Điều này mâu thuẫn với 5n + 4 là số lẻ. Vậy nếu 5n + 4 là số lẻ thì n là số lẻ.
a) Giả sử ngược lại rằng a ≥ 1 và b ≥ 1. Ta suy ra a + b ≥ 2. Điều này mâu thuẫn với giả thiết a + b < 2.
Vậy một trong hai số a và b phải nhỏ hơn 1.
b) Giả sử ngược lại rằng n là số tự nhiên chẵn, n = 2k (k ∈ N). Khi đó 5n + 4 = 10k + 4 = 2(5k + 2) là một số chẵn. Điều này mâu thuẫn với 5n + 4 là số lẻ.
Vậy nếu 5n + 4 là số lẻ thì n là số lẻ.
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
Chị xem thử ở đây (Em không chắc đúng đâu nha): Câu hỏi của Cao Thi Thuy Duong - Toán lớp 10 | Học trực tuyến
Chứng minh dễ mà cần gì tham khảo