Chứng tỏ biểu thức sau không phải là số chính phương:
A=1+11^11+111^111+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HÃY CHỨNG TỎ RẰNG HIỀU SAU CÓ THỂ VIẾT ĐC THÀNH MỘT TÍCH CỦA 2 THỪA SỐ BẰNG NHAU:
11 111 111 - 2 222
x = 11 111 111 - 2 222
Đặt 2 222 = 2 x 1 111.
Khi đó:
x = 11 111 111 - 2 x 1 111
Chúng ta có thể thấy rằng cả số 11 111 111 và 1 111 đều chia hết cho 1111.
11 111 111 = 1111 x 10 001 1 111 = 1111 x 1
Vì như vậy:
x = 1111 x 10 001 - 2 x 1111 x 1
x = 1111(10 001 - 2)
x = 1111 x 9999
Ta có:
11 111 111 = 1111 x 9999 2 222 = 1111 x 2
Do đó, chúng tôi đã chứng minh rằng hai số trên có thể viết thành một tích của hai số bằng nhau.
Ta sẽ CM tổng của 2 số chính phương chia 4 không thể có số dư là 3.
Thật vậy mọi số chính phương chẵn luôn chia hết cho 4.
mọi số chính phương lẻ luôn chia 4 dư 1 (vì (2x+1)2=4x(x+1)+1 chia 4 dư 1)
Do đó tổng của hai số chính phương chỉ có thể có số dư 0,1 hoặc 2 khi chia cho 4
Mà các số trên đều được viết dưới dạng 11...1=10...0+11.
Mà 10...0 chia hết cho 4 và 11 chia 4 dư 3 nên dãy số này không có số nào biểu diễn được dưới dạng tổng của 2 số chính phương (đpcm)
A = 111...1000...0 + 111...1 - 222...2
(n cs 1)(n cs 0) (n cs 1) (n cs 2)
\(A=111...1\cdot10^n+111...1-222...2\)
(n cs 1) ( n cs 1 ) ( n cs 2 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> A = K( 9k + 1 ) + K - 2K
= 9K^2 + K + K - 2K
= 9K^2 = (3K)^2
=> A là một số chính phương
B = 111...1000...0 + 111...1 + 444...4 + 1
(n cs 1)(n cs 0) (n cs 1) (n cs 4)
\(\Rightarrow B=111...1\cdot10^n+111...1+444...4+1\)
( n cs 1 ) ( n cs 1 ) ( n cs 4 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> B = K( 9K + 1 ) + K + 4K + 1
= 9K^2 + 6K + 1
= ( 3K + 1 ) ^2
=> B là một số chính phương
\(ab+1=\underbrace{11....11}_{2018c/s1}.\underbrace{11....13}_{2017c/s1}+1\)
\(\Leftrightarrow ab+1=(\underbrace{11....10}_{2017c/s1}+1).(\underbrace{11....10}_{2017c/s1}+3)+1\)
\(\Leftrightarrow ab+1=\underbrace{11....10^2}_{2017c/s1}+4.\underbrace{11....10}_{2017c/s1}+3+1\)
\(\Leftrightarrow ab+1=\underbrace{11....10^2}_{2017c/s1}+4.\underbrace{11....10}_{2017c/s1}+4\)
\(\Leftrightarrow ab+1=(\underbrace{11....10}_{2017c/s1}+2)^2\) là số chính phương
Vậy...
C áp dụng hằng đẳng thức : \(x^2+2xy+y^2=\left(x+y\right)^2\)
Bài 1:
Đặt \(\underbrace{111....1}_{1009}=t\Rightarrow 9t+1=10^{1009}\)
Ta có:
\(a+b+1=\underbrace{11...11}_{1009}.10^{1009}+\underbrace{11...1}_{1009}+4.\underbrace{11....1}_{1009}+1\)
\(=t(9t+1)+t+4.t+1=9t^2+6t+1=(3t+1)^2\) là scp.
Ta có đpcm.
Bài 2:
Đặt \(\underbrace{111....1}_{n}=t\Rightarrow 9t+1=10^n\)
Ta có:
\(a+b+c+8=\underbrace{111..11}_{n}.10^n+\underbrace{111....1}_{n}+\underbrace{11...1}_{n}.10+1+6.\underbrace{111...1}_{n}+8\)
\(t(9t+1)+t+10t+1+6t+8=9t^2+18t+9\)
\(=(3t+3)^2\) là scp.
Ta có đpcm.