Cho các số nguyên a,b,c thỏa mãn a + b + c = 2040. Chứng minh: a5 + b5 + c5 chia hết cho 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Vì \(a-2,a-1,a,a+1,a+2\) là 5 số nguyên liên tiếp nên h của chúng chia hết cho 5 và chia hết cho 2
\(=>a^5-a⋮5\)(1)
Mà a-1 và a+1 là 2 số tự nhiên liên tiếp nên h chúng chia hết cho 2
\(a^5-a⋮2\)(2)
Từ (1) và (2) suy ra \(a^5-a⋮30\)
Tương tự ta có : \(b^5-b⋮30;c^5-c⋮30\)
\(=>a^5+b^5+c^5-\left(a+b+c\right)⋮30\)
Mà \(a+b+c=2020⋮30\) nên \(a^5+b^5+c^5⋮30\)
Ta có:
\(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^5=-c^5\)
\(\Rightarrow a^5+5a^4b+10a^3b+10a^2b^3+5ab^4+b^5=-c^5\)
\(\Rightarrow a^5+b^5+c^5=5ab\left(a^3+b^3+2a^2b+2ab^2\right)\)
\(\Rightarrow a^5+b^5+c^5=5ab\left[\left(a^3+b^3\right)+2ab\left(a+b\right)\right]\)
\(\Rightarrow a^5+b^5+c^5=5ab\left[\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right]\)
\(\Rightarrow a^5+b^5+c^5=5ab\left(a+b\right)\left(a^2+ab+b^2\right)\)
\(\Rightarrow a^5+b^5+c^5=-5abc\left(a^2+ab+b^2\right)\)
\(\Rightarrowđpcm\)
Đề bài bị sai, ví dụ với \(\left(a;b;c\right)=\left(1;2;3\right)\) thì \(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)\) chia hết cho 5 nhưng \(\left(a-b\right)\left(b-c\right)\left(c-a\right)\) ko chia hết cho 5