1. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 6 cm. AC = 8 cm. Tính BC; AH; BH.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\end{matrix}\right.\)
Áp dụng PTG ta có: \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{6^2+8^2}=10\)
Áp dụng HTL ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{6.8}{10}=4,8\)
Áp dụng HTL ta có:\(BH.BC=AB^2\Rightarrow BC=\dfrac{6^2}{10}=3,6\)
Áp dụng HTL ta có:\(CH.BC=AC^2\Rightarrow BC=\dfrac{8^2}{10}=6,4\)
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
a,
pytago trong tam giác ABH
\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)
dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)
pytago cho tam giác ABC
\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)
\(=>HC=BC-HB=8cm\)
b, pytago cho tam giác AHB
\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)
rồi tính AC , CH làm tương tự bài trên
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
Áp dụng định lí Pytago vào ΔACB vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=64-36=28\)
hay \(AC=2\sqrt{7}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{6^2}{8}=\dfrac{36}{8}=4.5\left(cm\right)\\CH=\dfrac{28}{8}=3.5\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=6^2-4.5^2=15.75\left(cm\right)\)
hay \(AH=\dfrac{3\sqrt{7}}{2}\left(cm\right)\)
#)Giải :
A B C H 6 8
Áp dụng định lí Py - ta - go ta có :
\(BC^2=AB^2+AC^2=6^2+8^2=36+64=100\)
\(\Rightarrow BC=\sqrt{100}=10\)
Áp dụng hệ thức lượng vào tam giác vuông ABC, ta có :
\(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}\)
\(\Rightarrow AH^2=\frac{576}{25}\Rightarrow AH=\frac{24}{5}=4,8\left(cm\right)\)
\(\Rightarrow BC^2=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow AB^2=BH.BC\Rightarrow6^2=BH.10\Rightarrow BH=3,6\left(cm\right)\)
Vậy BC = 10cm ; AH = 4,8cm ; BH = 3,6cm
A B C H
Giải: Áp dụng định lí Pi - ta- go vào t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
=> BC2 = 62 + 82 = 36 + 64 = 100
=> BC = 10
Ta có: Sabc = AB.AC/2
Sabc = AH.BC/2
=> AB.AC/2 = AH.BC/2
=> AB.AC = AH.BC
=> 6.8 = AH.10
=> 48 = AH.10
=> AH = 48 : 10 = 4,8
Xét t/giác ABH có : AB2 = AH2 + BH2 (theo định lí Pi - ta - go)
=> BH2 = AB2 - AH2 = 62 - (4,8)2 = 36 - 23,04 = 12,96
=> BH = 3,6
Vậy ...