cho a+b=-5 và a.b=6.Tính
\(a^3\)-\(b^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(a+b=-5\)
\(\Rightarrow\left(a+b\right)^2=25\)
\(\Leftrightarrow a^2+2ab+b^2=25\)
\(\Leftrightarrow a^2+12+b^2=25\)
\(\Leftrightarrow a^2+b^2=13\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=-5\left(13-6\right)=-35\)
a) Ta có: \(a^3+b^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
Thay \(ab=40\) và \(a+b=-6\) vào biểu thức ta có
\(\left(-6\right)^3-3\cdot7\cdot\left(-6\right)=-90\)
b) Ta có: \(a^3-b^3\)
\(=\left(a-b\right)^3+3ab\left(a-b\right)\)
Thay \(ab=40\) và \(a-b=3\) vào biểu thức ta có:
\(3^3+3\cdot40\cdot3=387\)
a: a^3+b^3=(a+b)^3-3ab(a+b)
=(-6)^3-3*7*(-6)
=-90
b: a^3-b^3=(a-b)^3+3ab(a-b)
=3^3+3*40*3
=387
a3-b3-84
=(a-b)2 ( a2+ab+b2)-84
6.(a2-2ab+b2+3ab)-84
6[(a-b)2+3ab] -84
6( 62+3.9)-84
=294
ta có : a\(^3\)- b\(^3\)- 84 = (a-b)(a\(^2\)+ ab +b\(^2\)) - 84
= 6*(9+ a\(^2\)+b\(^2\)) -84
ta lại có: (a -b)=6 <=> ( a-b)\(^2\)= 36
<=> a\(^2\)-2ab +b\(^2\)=36 <=>a\(^2\)+b\(^2\)- 18 =36 <=> a\(^2\)+ b\(^2\)= 36 +18 =54
vậy a\(^3\)- b\(^3\)- 84 =6*(9+54)-84 =294
Có : a3 - b3 - 84
= (a - b)(a2 + ab + b2) - 84
= 6.(a2 + b2 + 9) - 84
= 6a2 + 6b2 + 54 - 84
= 6(a2 + b2) - 30
= 6 [ (a - b)2 + 2ab ] - 30
= 6 ( 62 + 2.9 ) - 30
= 324 - 30
= 294
a3 - b3 - 84
= (a - b)(a2 + ab + b2) - 84
= 6.(a2 + b2 + 9) - 84
= 6a2 + 6b2 + 54 - 84
= 6(a2 + b2) - 30
= 6 [ (a - b)2 + 2ab ] - 30
= 6 ( 62 + 2.9 ) - 30
= 324 - 30
= 294
\(A=a^3-b^3-84\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)-84\)
\(=\left(a-b\right)\left\{\left(a-b\right)^2+3ab\right\}\)
\(=6.\left[6^2+3.9\right]=6.63=379\)
\(Ủng\)hộ nhak
2:
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)
=>x=16/3; y=8; z=32/3
A=3x+2y-6z
=3*16/3+2*8-6*32/3
=16+16-64
=-32
b: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
=>x=5căn 2; y=6căn 2; y=7căn 2
B=xy-yz
=y(x-z)
=6căn 2(5căn 2-7căn 2)
=-6căn 2*2căn 2
=-24
Xét VP : \(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)
vậy VT=VP
=> \(a^3+b^3=\left(-5\right)^3-30.\left(-5\right)=25\)
Xét VP: \(\left(a-b\right)^3+3ab\left(a-b\right)=a^3-3a^2b+3ab^2-b^2+3a^2b-3ab^2=a^3-b^3\)
=> VT=VP
\(a^3-b^3=\left(a-b\right)\left(a^2+b^2+ab\right)=-5\left[\left(a+b\right)^2-ab\right]=-5\left(25-6\right)=-95\)
Ta có: a3 - b3 = ( a - b ) ( a2 + ab + b2 ) = ( a - b ) ( a2 + 2ab + b2 - ab )
= ( a - b ) [ (a + b)2 - ab ] = ( a - b ) [(-5)2 - 6 )] = -5 . ( 25 - 6 ) = -5 . 19 = -95