Chứng minh rằng nếu p là một số nguyên tố lẻ và \(n\inℕ^∗\) , n < p ta có :
( n - 1 )!( p - n )! \(\equiv\left(-1\right)^n\left(mod\:p\right)\)
Giúp mình nha!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo ( 1 ), tính theo mod p, ta có
\(-1\equiv\left(p-1\right)!\equiv\left(n-1\right)!n\left(n+1\right)...\left(p-1\right)\)
\(\equiv\left(n-1\right)!\left(p-\left(n-p\right)\right)\left(p-\left(p-n-1\right)\right)...\left(p-1\right)\)
\(\equiv\left(n-1\right)!\left(-1\right)^{p-n}\left(p-n\right)\left(p-n-1\right)\) )...1
\(\equiv\left(n-1\right)!\left(-1\right)^{p-n}\left(p-n\right)!\)
\(\equiv\left(n-1\right)!\left(-1\right)^{n-1}\left(p-n\right)!\) ( vì p lẻ )
Cbht
Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.
a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;
\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố )
Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)
mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ
\(\Leftrightarrow a_1;a_2;..a_m\) chẵn
\(\Leftrightarrow n\) là số chính phương
=> n luôn có dạng \(n=l^2\)
Mặt khác \(x_1;x_2;..x_m\) là số nguyên tố
Nếu \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ
<=> r = 0 nên n = 2r.l2 đúng (1)
Nếu \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\)
TH1 : \(a_k\) \(⋮2\)
\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)
=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2)
TH2 : ak lẻ
Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\) nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết)
Nếu \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)
Từ (1);(2);(3) => ĐPCM
Đặt \(n=4k+1\) thì \(P=\dfrac{\left(4k+1\right)\left(4k+2\right)\left(4k+4\right)\left(4k+6\right)}{2}=8\left(4k+1\right)\left(2k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.
Dẫn đến \(Q=\left(4k+1\right)\left(2k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.
Lại có \(\left(2k+1,4k+1\right)=1;\left(2k+1,k+1\right)=1;\left(2k+1,2k+3\right)=1\) nên \(\left(2k+1,\left(4k+1\right)\left(k+1\right)\left(2k+3\right)\right)=1\).
Do đó để Q là số lập phương thì \(2k+1\) và \(R=\left(4k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.
Mặt khác, ta có \(R=8k^3+22k^2+17k+3\)
\(\Rightarrow8k^3+12k^2+6k+1=\left(2k+1\right)^3< R< 8k^3+24k^2+24k+8=\left(2k+2\right)^3\) nên \(R\) không thể là số lập phương.
Vậy...
Chứng minh rằng
\(\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n\left(n+1\right)}(n\inℕ^∗,n\ne1)\)
Giúp mình với
Với số tự nhiên n khác 0 và 1 ta có:
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
=> \(\frac{1}{n}=\frac{1}{n\left(n+1\right)}+\frac{1}{n+1}\)
đk : x khác 0 và -1
\(\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n\left(n+1\right)}\)
\(< =>\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)
\(< =>\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\left(đpcm\right)\)
\(\sqrt{n^2+n^2\left(n+1\right)^2+\left(n+1\right)^2}\)
\(=\sqrt{n^2+\left(n^2+n\right)^2+\left(n^2+2n+1\right)}\)
\(=\sqrt{2\left(n^2+n\right)+\left(n^2+n\right)^2+1}=\sqrt{\left(n^2+n+1\right)^2}\)
\(=\left|n^2+n+1\right|=n^2+n+1\) vì \(n^2+n+1=\left(n+\frac{1}{4}\right)^2+\frac{3}{4}>0\)
Do đó nếu \(\sqrt{n^2+n^2\left(n+1\right)^2+\left(n+1\right)^2}\) là số nguyên nếu n là số nguyên