(x-3)^2=1
(2x+1)^3=-8
(x-1/4)^2=1/25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g. \(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)
f. \(\frac{2}{3}x-\frac{1}{2}x=\frac{5}{12}\)
\(\Leftrightarrow x\left(\frac{2}{3}-\frac{1}{2}\right)=\frac{5}{12}\)
\(\Leftrightarrow x\left(\frac{4}{6}-\frac{3}{6}\right)=\frac{5}{12}\)
\(\Leftrightarrow\frac{1}{6}x=\frac{5}{12}\)
\(\Leftrightarrow x=\frac{5}{12}\div\frac{1}{6}\)
\(\Leftrightarrow x=\frac{30}{12}=\frac{5}{2}\)
1) ( 2x + 1 )2 = 25
=> ( 2x + 1 )2 = 52
=> 2x + 1 = 5 hoặc 2x + 1 = -5
=> 2x = 4 hoặc 2x = -6
=> x = 2 hoặc x = -3
2) 5x+2 = 625
=> 5x+2 = 54
=> x + 2 = 4
=> x = 2
3) ( 2x - 3 )2 = 36
=> ( 2x - 3 )2 = 62
=> 2x - 3 = 6 hoặc 2x - 3 = -6
=> 2x = 9 hoặc 2x = -3
=> x = 9/2 hoặc x = -3/2
4) ( 2x - 1 )3 = -8
=> ( 2x - 1 )3 = ( -2 )3
=> 2x - 1 = -2
=> 2x = -1
=> x = -1/2
5: =>4x^2-1/9=0
=>(2x-1/3)(2x+1/3)=0
=>x=1/6 hoặc x=-1/6
6: =>x-1=2
=>x=3
7:=>(2x-1)^3=-27
=>2x-1=-3
=>2x=-2
=>x=-1
8: =>1/8(x-1)^3=-125
=>(x-1)^3=-1000
=>x-1=-10
=>x=-9
3: =>(5x-5)^2-4=0
=>(5x-7)(5x-3)=0
=>x=3/5 hoặc x=7/5
4: =>(5x-1)^2=0
=>5x-1=0
=>x=1/5
1: =>(3x-1)(2x-1)=0
=>x=1/3 hoặc x=1/2
2: =>x^2(2x-3)-4(2x-3)=0
=>(2x-3)(x^2-4)=0
=>(2x-3)(x-2)(x+2)=0
=>x=3/2;x=2;x=-2
`@` `\text {Answer}`
`\downarrow`
`1,`
\(2x\left(3x-1\right)+1-3x=0\)
`<=> 2x(3x - 1) - 3x + 1 = 0`
`<=> 2x(3x - 1) - (3x - 1) = 0`
`<=> (2x - 1)(3x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x-1=0\\3x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=1\\3x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy, `S = {1/2; 1/3}`
`2,`
\(x^2\left(2x-3\right)+12-8x=0\)
`<=> x^2(2x - 3) - 8x + 12 =0`
`<=> x^2(2x - 3) - (8x - 12) = 0`
`<=> x^2(2x - 3) - 4(2x - 3) = 0`
`<=> (x^2 - 4)(2x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}x^2-4=0\\2x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=4\\2x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=\left(\pm2\right)^2\\x=\dfrac{3}{2}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\pm2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy, `S = {+-2; 3/2}`
`3,`
\(25\left(x-1\right)^2-4=0\)
`<=> 25(x-1)(x-1) - 4 = 0`
`<=> 25(x^2 - 2x + 1) - 4 = 0`
`<=> 25x^2 - 50x + 25 - 4 = 0`
`<=> 25x^2 - 15x - 35x + 21 = 0`
`<=> (25x^2 - 15x) - (35x - 21) = 0`
`<=> 5x(5x - 3) - 7(5x - 3) = 0`
`<=> (5x - 7)(5x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}5x-7=0\\5x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}5x=7\\5x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy, `S = {7/5; 3/5}`
`4,`
\(25x^2-10x+1=0\)
`<=> 25x^2 - 5x - 5x + 1 = 0`
`<=> (25x^2 - 5x) - (5x - 1) = 0`
`<=> 5x(5x - 1) - (5x - 1) = 0`
`<=> (5x - 1)(5x-1)=0`
`<=> (5x-1)^2 = 0`
`<=> 5x - 1 = 0`
`<=> 5x = 1`
`<=> x = 1/5`
Vậy,` S = {1/5}.`
Bài 1.
\(a, (3x-4)^2\)
\(=\left(3x\right)^2-2\cdot3x\cdot4+4^2\)
\(=9x^2-24x+16\)
\(b,\left(1+4x\right)^2\)
\(=1^2+2\cdot1\cdot4x+\left(4x\right)^2\)
\(=16x^2+8x+1\)
\(c,\left(2x+3\right)^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)
\(=8x^3+36x^2+54x+27\)
\(d,\left(5-2x\right)^3\)
\(=5^3-3\cdot5^2\cdot2x+3\cdot5\cdot\left(2x\right)^2-\left(2x\right)^3\)
\(=125-150x+60x^2-8x^3\)
\(e,49x^2-25\)
\(=\left(7x\right)^2-5^2\)
\(=\left(7x-5\right)\left(7x+5\right)\)
\(f,\dfrac{1}{25}-81y^2\)
\(=\left(\dfrac{1}{5}\right)^2-\left(9y\right)^2\)
\(=\left(\dfrac{1}{5}-9y\right)\left(\dfrac{1}{5}+9y\right)\)
Bài 2.
\(a,\left(x-5\right)^2-\left(x+7\right)\left(x-7\right)=8\)
\(\Rightarrow x^2-2\cdot x\cdot5+5^2-\left(x^2-7^2\right)=8\)
\(\Rightarrow x^2-10x+25-\left(x^2-49\right)=8\)
\(\Rightarrow x^2-10x+25-x^2+49=8\)
\(\Rightarrow\left(x^2-x^2\right)-10x=8-25-49\)
\(\Rightarrow-10x=-66\)
\(\Rightarrow x=\dfrac{33}{5}\)
\(b,\left(2x+5\right)^2-4\left(x+1\right)\left(x-1\right)=10\)
\(\Rightarrow\left(2x\right)^2+2\cdot2x\cdot5+5^2-4\left(x^2-1^2\right)=10\)
\(\Rightarrow4x^2+20x+25-4x^2+4=10\)
\(\Rightarrow\left(4x^2-4x^2\right)+20x=10-25-4\)
\(\Rightarrow20x=-19\)
\(\Rightarrow x=\dfrac{-19}{20}\)
#\(Toru\)
Bài 1
a) (3x - 4)²
= (3x)² - 2.3x.4 + 4²
= 9x² - 24x + 16
b) (1 + 4x)²
= 1² + 2.1.4x + (4x)²
= 1 + 8x + 16x²
c) (2x + 3)³
= (2x)³ + 3.(2x)².3 + 3.2x.3² + 3³
= 8x³ + 36x² + 54x + 27
d) (5 - 2x)³
= 5³ - 3.5².2x + 3.5.(2x)² - (2x)³
= 125 - 150x + 60x² - 8x³
e) 49x² - 25
= (7x)² - 5²
= (7x - 5)(7x + 5)
f) 1/25 - 81y²
= (1/5)² - (9y)²
= (1/5 - 9y)(1/5 + 9y)
Bài làm
a) x² - 3 = 22
=> x² = 25
=> x = + 5
Vậy x = + 5
b) 2x³ + 5 = -11
2x³ = -16
x³ = -8
x = -2
Vậy x = -2
c) ( x + 2 )² = 81
=> x + 2 = 9
=> x = 7
Vậy x = 7
d) ( 2x + 1 )² = 25
=> 2x + 1 = 5
=> 2x = 4
=> x = 2
Vậy x = 2
e) 5x + 2 = 625
5x = 623 ( vô lí )
g) ( 2x - 3 )² = 36.
=> 2x - 3 = 6
=> 2x = 9
=> x = 4,5
Vậy x = 4,5
h) ( 2x - 1 )³ = -8
=> 2x - 1 = -2
=> 2x = -1
=> x = -1/2
Vậy x = -1/2
i) ( x - 1 )x + 2 = ( x - 1 )x + 6
=> [ (x - 1 )x - ( x - 1 )x ] = 6 - 2
=> 0 = 4 ( vô lí )
Vậy x thuộc rỗng.
k) x² + x = 0
=> x( x + 1 ) = 0
=> x = 0 hoặc x + 1 = 0
=> x = 0 hoặc x = -1
Vậy x = 0 hoặc x = -1
+) (5x-1). (2x+3)-3. (3x-1)=0
10x^2+15x-2x-3 - 9x+3=0
10x^2 +8x=0
2x(5x+4)=0
=> x=0 hoặc x= -4/5
+) x^3 (2x-3)-x^2 (4x^2-6x+2)=0
2x^4 -3x^3 -4x^4 + 6x^3 - 2x^2=0
-2x^4 + 3x^3-2x^2=0
x^2(-2x^2+x-2)=0
-2x^2(x-1)^2=0
=> x=0 hoặc x=1
+) x (x-1)-x^2+2x=5
x^2 -x -x^2+2x=5
x=5
+) 8 (x-2)-2 (3x-4)=25
8x - 16-6x+8=25
2x=33
x=33/2
b) x(x-4) - 2x+8 = 0
x(x-4) - 2(x-4) = 0
(x-2) (x-4) = 0
TH1: x-2=0 TH2: x-4=0
x=2 x=4
Vậy x\(\in\){2;4}
\(b,\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\\ c,\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\\ \Leftrightarrow\left(x+5\right)\left(x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\\ d,\Leftrightarrow\left(2x-1\right)^2-\left(2x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(2x-1-2x-1\right)=0\\ \Leftrightarrow x=\dfrac{1}{2}\\ e,\Leftrightarrow\left(3x-1-x-5\right)\left(3x-1+x+5\right)=0\\ \Leftrightarrow\left(2x-6\right)\left(4x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\ f,\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)\left(x-12\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x^2+x+16\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{63}{4}=0\left(vô.n_0\right)\end{matrix}\right.\\ \Leftrightarrow x=2\)
\(a,\left(x-3\right)^2=1\)
=> \(\sqrt{\left(x-3\right)^2}=\sqrt{1}\)
=> \(\left|x-3\right|=1\)
=> \(\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1+3=4\\x=-1+3=2\end{matrix}\right.\)
Vậy \(x\in\left\{4;2\right\}\)
\(\left(2x+1\right)^3=-8\)
=> \(\sqrt[3]{\left(2x+1\right)^3}=\sqrt[3]{-8}\)
=> \(2x+1=-2\)
=> \(2x=-2-1=-3\)
=> \(x=-3:2=-\frac{3}{2}\)
Vậy \(x\in\left\{-\frac{3}{2}\right\}\)
\(c,\left(x-\frac{1}{4}\right)^2=\frac{1}{25}\)
=> \(\sqrt{\left(x-\frac{1}{4}\right)^2}=\sqrt{\frac{1}{25}}\)
=> \(\left|x-\frac{1}{4}\right|=\frac{1}{5}\)
=> \(\left[{}\begin{matrix}x-\frac{1}{4}=\frac{1}{5}\\x-\frac{1}{4}=-\frac{1}{5}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{1}{5}+\frac{1}{4}=\frac{9}{20}\\x=-\frac{1}{5}+\frac{1}{4}=\frac{1}{20}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{9}{20};\frac{1}{20}\right\}\)