Tìm x,y
2x+1.2y=12x
b) 10x:5y=20y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
10x :5y =20y
10x = 20y.5y=100y2
x = 10y2
nếu y =1 thì x = 10
y =2 thì x = 40
..................
10x : 5y = 20y
10=20y . 5y = 100y2
x = 10y2
nếu y = thì x = 10
y =thì x = 40
Bạn tham khảo nha
Bài làm
10x : 5y=20y
10=20y . 5y =100y2
x=10y2
Nếu y = thì x = 10
y = thì x = 40
Vì 10x=20y\(\Rightarrow\frac{x}{20}=\frac{y}{10}\)
Áp dụng tính chât dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{x+y}{20+10}=\frac{300}{30}=10\)
\(\Rightarrow\begin{cases}\frac{x}{20}=10\\\frac{y}{10}=10\end{cases}\)\(\Rightarrow\begin{cases}x=200\\y=100\end{cases}\)
Vậy x=200;y=100
Theo đề bài, ta có:
10x=20y và x+y=300
\(\Rightarrow10x=20y=\frac{x}{10}=\frac{y}{20}\) và x+y=300
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{10}=\frac{y}{20}=\frac{x+y}{10+20}\frac{300}{30}=10\)
Vậy x=100,y=200
^...^ ^_^
10x : 5y = 20y
10x = 20y . 5y
10x = 100xy
10x - 100xy = 0
10x ( 1 - 10y ) = 0
\(\Rightarrow\orbr{\begin{cases}10x=0\\1-10y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\y=\frac{1}{10}\end{cases}}\)
b) 1x + 2x + 3x + ...+ 2017x = 2018 . 2019
x.(1+2+3+...+2017) = 2018 . 2019
x.2 035 153 = 2018.2019
x = 4038/2017
\(D=x^2+20y^2+8xy-4y+2009\)
\(\Leftrightarrow D=x^2+16y^2+4y^2+8xy-4y+1+2008\)
\(\Leftrightarrow D=\left(x^2+8xy+16y^2\right)+\left(4y^2-4y+1\right)+2008\)
\(\Leftrightarrow D=\left[x^2+2.x.4y+\left(4y\right)^2\right]+\left[\left(2y\right)^2-2.2y.1+1^2\right]+2008\)
\(\Leftrightarrow D=\left(x+4y\right)^2+\left(2y-1\right)^2+2008\)
Vậy GTNN của \(D=2008\) khi \(\left\{{}\begin{matrix}x+4y=0\\2y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+4.\left(0,5\right)=0\\y=0,5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=0,5\end{matrix}\right.\)
a) \(C=x^2-4xy+5y^2+10x-22y+28\)
\(\Leftrightarrow C=x^2-4xy+4y^2+y^2+10x-20y-2y+1+25+2\)
\(\Leftrightarrow C=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+2+25\)
\(\Leftrightarrow C=\left(x-2y\right)^2+10\left(x-2y\right)+\left(y-1\right)^2+2+25\)
\(\Leftrightarrow C=\left[\left(x-2y\right)^2+10\left(x-2y\right)+25\right]+\left(y-1\right)^2+2\)
\(\Leftrightarrow C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Vậy GTNN của \(C=2\) khi \(\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-2.1+5=0\\y=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
a: \(x^2+3y^2-4x+6y+7=0\)
\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)
\(10x=15y\Rightarrow\frac{x}{15}=\frac{y}{10}\left(1\right)\)
\(15y=6z\Rightarrow\frac{y}{6}=\frac{z}{15}\left(2\right)\)
Chia hai vế của (1) cho 3 ta được: \(\frac{x}{45}=\frac{y}{30}\)
Chia hai vế của (2) cho 5 ta được: \(\frac{z}{75}=\frac{y}{30}\)
Từ đó ta có; \(\frac{x}{15}=\frac{y}{30}=\frac{z}{75}=\frac{10x}{450}=\frac{5y}{150}\\ =\frac{10x-5y+z}{450-150+75}=\frac{25}{375}=\frac{1}{15}\)
Suy ra: \(x=3;y=2;z=5\)
a)\(2^{x+1}.2^y=12^x=>2^{x+y+1}=2^{2x}.3^x=>2^{x+y+1}:2^{2x}=3^x=>2^{y+1-x}=3^x\)
Mà (2;3)=1 nên \(y+1-x=x=0=>y=-1\)
Vậy x=0,y=-1
b)\(10^x:5^y=20^y=>2^x.5^x:5^y=2^{2y}.5^y\)
\(=>2^{x-2y}=5^{y-x}\)
Mà (2,5)=1 nên \(x-2y=y-x=>x=y=0\)
Vậy x=y=0