1, Tam giác ABC có trug tuyến AM , vẽ D s/c M là trung điểm của AD . CMR
a, AB song song và bằng CD
b, E là trung điểm AC , F là trung điểm DB. CM E,F,M thẳng hàng
c, AF cắt BM tại I ; DE cắt CM tại K. CM BI=IK=KC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AKMH có
\(\widehat{AKM}=\widehat{AHM}=\widehat{KAH}=90^0\)
Do đó: AKMH là hình chữ nhật
b: Xét tứ giác BMKH có
MK//BH
MK=BH
Do đó: BMKH là hình bình hành
Suy ra: BK và MH cắt nhau tại trung điểm của mỗi đường
mà E là trung điểm của MH
nên E là trung điểm của BK
=>B,E,K thẳng hàng
a: HM là đường trung bình của ΔEBC
=>EH=HB
KM là đường trug bình của ΔFBC
=>FK=KC
ΔAHM có EO//HM
=>AE/AH=AO/AM
ΔAKM có KM//FO
nên AF/AK=AO/AM
=>AE/AH=AF/AK
=>EF//HK
b: ΔAHM có EO//HM
=>MA/MO=HA/HE
=>MA/MO=HA/HB
ΔAKM có FO//KM
=>MA/MO=KA/KF=KA/KC
=>HA/HB=KA/KC
=>HK//BC
=>EF//BC
gggggjjjk..hhhyh iuugln............................lklhuluiiiihhhhhhh ok-
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Xét ∆ABM và ∆CDM ta có :
AM = MD
BM = MC
AMB = CMD ( đối đỉnh)
=> ∆ABM = ∆CDM(c.g.c)
=> BAM = CDM ( tg ứng )
Mà 2 góc này ở vị trí so le trong
=> AB//CD
=> AB= CD