K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

\(\left[x^2\right]^4\cdot16=2^{20}\)

\(\Leftrightarrow x^8\cdot16=2^{20}\)

\(\Leftrightarrow x^8\cdot2^4=2^{20}\)

\(\Leftrightarrow x^8=2^{20}:2^4\)

\(\Leftrightarrow x^8=2^{16}\)

\(\Leftrightarrow x^8=\left[2^2\right]^8\)

\(\Leftrightarrow x^8=4^8\Leftrightarrow x=4\)

\(2^{x+3}+2^x=144\)

\(\Leftrightarrow2^x\cdot2^3+2^x=144\)

\(\Leftrightarrow2^x\left[2^3+1\right]=144\)

\(\Leftrightarrow2^x\cdot9=144\)

\(\Leftrightarrow2^x=16\Leftrightarrow x=4\)

Bài cuối tt

15 tháng 7 2019

X^8=2^16  =>X=4

2^X(2^3+1)=144

=>2^X=16

=>X=4

3^3X(2^2-1)=9^5

=>3^3X=3^9

=>X=3

8 tháng 10 2016

b) 3x4-3x3+9x3-9x2-24x2+24x-48x+48

=3x3(x-1)+9x2(x-1)-24x(x-1)-48(x-1)

=(x-1)(3x3+9x2-24x-48)

=3(x-1)(x3+3x2-8x-16)

5 tháng 9 2018

(x2 - 3)2 + 16

= (x2 - 3)2 + 42

= (x2 - 3 + 4)(x2 - 3 - 4)

= (x2 + 1)(x2 - 7)

5 tháng 9 2018

đúng  đi rồi làm cho

14 tháng 7 2017

a) x4 - 10x3 - 15x2 + 20x + 4

= x4 + 2x3 - 12x3 - 24x2 + 9x2 + 18x + 2x + 4

= x3(x + 2) - 12x2(x + 2) + 9x(x + 2) + 2(x + 2)

= (x + 2)(x3 - 12x2 + 9x + 2)

b)

2x4 - 5x3 - 27x2 + 25x + 50

= 2x3(x - 2) - x2(x - 2) - 25x(x - 2) - 25(x - 2)

= (x - 2)(2x3 - x2 - 25x - 25)

14 tháng 7 2017

c)\(3x^4+6x^3-33x^2-24x+48\)

\(=3\left(x^4+2x^3-11x^2-8x+16\right)\)

\(=3\left(x^4-x^3-4x^2+3x^3-3x^2-12x-4x^2+4x+16\right)\)

\(=3\left(x^2\left(x^2-x-4\right)+3x\left(x^2-x-4\right)-4\left(x^2-x-4\right)\right)\)

\(=3\left(x^2+3x-4\right)\left(x^2-x-4\right)\)

\(=3\left(x^2-x+4x-4\right)\left(x^2-x-4\right)\)

\(=3\left[x\left(x-1\right)+4\left(x-1\right)\right]\left(x^2-x-4\right)\)

\(=3\left(x-1\right)\left(x+4\right)\left(x^2-x-4\right)\)

14 tháng 12 2021

\(ĐK:x\ge0;y\ge2;5x-y\ge0\\ PT\left(1\right)\Leftrightarrow\sqrt{y+3x}-\sqrt{5x-y}+\sqrt{2x+7y}-3\sqrt{x}=0\\ \Leftrightarrow\dfrac{2y-2x}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7y-7x}{\sqrt{2x+7y}+3\sqrt{x}}=0\\ \Leftrightarrow\left(y-x\right)\left(\dfrac{2}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7}{\sqrt{2x+7y}+3\sqrt{x}}\right)=0\\ \Leftrightarrow x=y\left(\dfrac{2}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7}{\sqrt{2x+7y}+3\sqrt{x}}>0\right)\)

Thay vào \(PT\left(2\right)\Leftrightarrow x-4+\sqrt{x-2}=\sqrt{x^3-10x^2+33x-34}-\sqrt{x^3-9x^2+24x-16}\)

\(\Leftrightarrow\dfrac{x^2-9x+18}{x-4+\sqrt{x-2}}=\dfrac{-x^2+9x-18}{\sqrt{x^3-10x^2+33x-34}+\sqrt{x^3-9x^2+24x-16}}\\ \Leftrightarrow\left(x^2-9x+18\right)\left(\dfrac{1}{x-4+\sqrt{x-2}}+\dfrac{1}{\sqrt{x^3-10x^2+33x-34}+\sqrt{x^3-9x^2+24x-16}}\right)=0\\ \Leftrightarrow x^2-9x+18=0\left(\text{ngoặc lớn luôn }>0,\forall x\ge2\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=y=3\\x=y=6\end{matrix}\right.\)

Vậy ...

a: =(6x)^2-(3x-2)^2

=(6x-3x+2)(6x+3x-2)

=(9x-2)(3x+2)

d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)

\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)

=8x(x^2+1)

e: =(4x)^2-2*4x*3y+(3y)^2

=(4x-3y)^2

f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)

\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)

g: =(4x)^3+1^3

=(4x+1)(16x^2-4x+1)

k: =x^3(27x^3-8)

=x^3(3x-2)(9x^2+6x+4)

l: =(x^3-y^3)(x^3+y^3)

=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)

10 tháng 9 2016

Dài 166

b) 2x2+3x-27=2x2-6x+9x-27=2x(x-3)+9(x-3)=(x-3)(2x+9)

15 tháng 2 2020

7)(16-8x)(2-6x)=0  

=> 16 - 8x = 0 hoặc 2 - 6x = 0

=> 16 = 8x hoặc 2 = 6x

=> x = 2 hoặc x = 1/3
8) (x+4)(6x-12)=0  

=> x + 4 = 0 hoặc 6x - 12 = 0

=> x = -4 hoặc x = 2
9) (11-33x)(x+11)=0 

=> 11 - 33x = 0 hoặc x + 11 = 0

=> x = 1/3 hoặc x = -11
10) (x-1/4)(x+5/6)=0 

=> x - 1/4 = 0 hoặc x + 5/6 = 0

=> x = 1/4 hoặc x = -5/6
11) (7/8-2x)(3x+1/3)=0  

=> 7/8 - 2x = 0 hoặc 3x + 1/3 = 0

=> 2x = 7/8 hoặc 3x = -1/3

=> x = 7/16 hoặc x = -1/9
12)3x-2x^2=0  

=> x(3 - 2x) = 0

=> x = 0 hoặc 3 - 2x = 0

=> x = 0 hoặc x = 3/2

15 tháng 2 2020

\(a,\left(16-8x\right)\left(2-6x\right)=0\)

\(\hept{\begin{cases}16-8x=0\\2-6x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}}\)

\(b,\left(x+4\right)\left(6x-12\right)=0\)

\(\hept{\begin{cases}x+4=0\\6x-12=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=2\end{cases}}}\)

\(c,\left(11-33x\right)\left(x+11\right)=0\)

\(\hept{\begin{cases}11-33x=0\\x+11=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\x=-11\end{cases}}}\)

\(d,\left(x-\frac{1}{4}\right)\left(x+\frac{5}{6}\right)=0\)

\(\hept{\begin{cases}x-\frac{1}{4}=0\\x+\frac{5}{6}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{5}{6}\end{cases}}}\)

\(e,\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)

\(\hept{\begin{cases}\frac{7}{x}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}\\x=-\frac{1}{9}\end{cases}}}\)

\(f,3x-2x^2=0\)

\(x\left(3-2x\right)=0\)

\(\hept{\begin{cases}x=0\\3-2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)