Tìm x:
\(x+\frac{1}{100}+x+\frac{2}{100}+x+\frac{3}{100}+...+x+\frac{99}{100}=100x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+100)*(1/99+1/96+1/93+1/91)=0
suy ra x+100=0
suy ra x=-100
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+99\right)\left(x+100\right)}=\frac{k}{x\left(x+100\right)}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{k}{x\left(x+100\right)}\)
\(\frac{1}{x}-\frac{1}{x+100}=\frac{k}{x\left(x+100\right)}\)
\(\frac{x+100}{x\left(x+100\right)}-\frac{x}{x\left(x+100\right)}=\frac{k}{x\left(x+100\right)}\)
k = 100
Câu 1:
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x102-101x101-51-50\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x\left(102-101\right)-\left(50+51\right)\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101-101\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x0}{2+4+6+8+...+2048}\)
\(A=0\)
Ta có:Số số hạng từ 2 đến 101 là:
(101-2):1+1=100(số hạng)
Do đó từ 2 đến 101 có số cặp là:
100:2=50(cặp)
\(B=\frac{101+100+99+...+3+2+1}{101-100+99-98+3-2+1}\)
\(B=\frac{5151}{51}\)
\(B=101\)
Câu 2:
a)697:\(\frac{15x+364}{x}\)=17
\(\frac{15x+364}{x}\)=697:17
\(\frac{15x+364}{x}\)=41
15x+364=41x
41x-15x=364
26x=364
x=14
Vậy x=14
b)92.4-27=\(\frac{x+350}{x}+315\)
\(\frac{x+350}{x}+315\)=341
\(\frac{x+350}{x}\)=26
x+350=26
x=26-350
x=-324
Vậy x=-324
c, 720 : [ 41 - ( 2x -5)] = 40
[ 41 - ( 2x -5)] =720:40
[ 41 - ( 2x -5)] =18
2x-5=41-18
2x-5=23
2x=28
x=14
Vậy x=14
d, Số số hạng từ 1 đến 100 là:
(100-1):1+1=100(số hạng)
Tổng dãy số là:
(100+1)x100:2=5050
Mà cứ 1 số hạng lại có 1x suy ra có 100x
Ta có:(x+1) + (x+2) +...+ (x+100) = 5750
(x+x+...+x)+(1+2+...+100)=5750
100x+5050=5750
100x=700
x=7
Vậy x=7
\(x+\frac{1}{100}+x+\frac{2}{100}+...+x+\frac{99}{100}=100x\)
\(\Rightarrow99x+\frac{1+2+...+99}{100}=100x\)
\(\Rightarrow100x-99x=\frac{\frac{\left(1+99\right).99}{2}}{100}\)
\(\Rightarrow x=\frac{99}{2}\)
Vậy \(x=\frac{99}{2}\)
\(x+\frac{1}{100}+x+\frac{2}{100}+x+\frac{3}{100}+...+x+\frac{99}{100}=100x\)
\(\Leftrightarrow99x+\frac{1+2+3+...+99}{100}=100x\)
\(\Leftrightarrow x=\frac{1+2+3+...+99}{100}\)
\(\Leftrightarrow x=\frac{\frac{99\left(99+1\right)}{2}}{100}\)
\(\Leftrightarrow x=\frac{4950}{100}\)
\(\Leftrightarrow x=\frac{99}{2}\)