K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

Câu này bn lập hpt tìm a,b,c rồi thay 100 và -96 vô tính.

Mk chỉ gợi ý thôi bn tự làm nhé! ^^

còn d thì sao bn

10 tháng 8 2018

Ta có:

\(P\left(1\right)=7=7.1^2\)\(P\left(2\right)=28=7.2^2\)\(P\left(3\right)=63=7.3^2\)

\(\Rightarrow\)Đặt \(g\left(x\right)=7x^2\).

Đặt \(Q\left(x\right)=P\left(x\right)-g\left(x\right)\).

Ta có:

\(Q\left(1\right)=Q\left(2\right)=Q\left(3\right)=0\)

\(\Rightarrow x=1;x=2;x=3\)là các nghiệm của đa thức Q(x)

\(\Rightarrow Q\left(x\right)⋮\left(x-1\right);\left(x-2\right);\left(x-3\right)\)

Do Q(x) là đa thức bậc 4 có hệ số cao nhất bằng 1 nên

\(Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right).\)

\(\Rightarrow P\left(x\right)=Q\left(x\right)+g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)+7x^2\)

Ta có:

\(P\left(100\right)=\left(100-1\right)\left(100-2\right)\left(100-3\right)\left(100-m\right)+7.100^2\)

\(=99.98.97\left(100-m\right)+7.100^2==97.98.99.100-97.98.99m+7.100^2\)

\(P\left(-96\right)=\left(-96-1\right)\left(-96-2\right)\left(-96-3\right)\left(-96-m\right)+7.\left(-96\right)^2\)

\(=\left(-97\right).\left(-98\right).\left(-99\right).\left(-96-m\right)+7.96^2\)

\(=\left(-96\right).\left(-97\right).\left(-98\right).\left(-99\right)-\left(-97\right).\left(-98\right).\left(-99\right).m+7.96^2\)

\(=96.97.98.99+97.98.99m+7.96^2\)

\(A=\frac{P\left(100\right)+P\left(-96\right)}{8}\)

\(=\frac{97.98.99.100-97.98.99m+7.100^2+96.97.98.99+97.98.99m+7.96^2}{8}\)

\(=\frac{97.98.99\left(100+96\right)+7.\left(100^2+96^2\right)}{8}=112244867\)

10 tháng 8 2018

Ta có:

\(P\left(1\right)=7=7.1^2\)\(P\left(2\right)=28=7.2^2\)\(P\left(3\right)=63=7.3^2\)

\(\Rightarrow\)Đặt \(g\left(x\right)=7x^2\).

Đặt \(Q\left(x\right)=P\left(x\right)-g\left(x\right)\).

Ta có:

\(Q\left(1\right)=Q\left(2\right)=Q\left(3\right)=0\)

\(\Rightarrow x=1;x=2;x=3\)là các nghiệm của đa thức Q(x)

\(\Rightarrow Q\left(x\right)⋮\left(x-1\right);\left(x-2\right);\left(x-3\right)\)

Do Q(x) là đa thức bậc 4 có hệ số cao nhất bằng 1 nên

\(Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right).\)

\(\Rightarrow P\left(x\right)=Q\left(x\right)+g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)+7x^2\)

Ta có:

\(P\left(100\right)=\left(100-1\right)\left(100-2\right)\left(100-3\right)\left(100-m\right)+7.100^2\)

\(=99.98.97\left(100-m\right)+7.100^2==97.98.99.100-97.98.99m+7.100^2\)

\(P\left(-96\right)=\left(-96-1\right)\left(-96-2\right)\left(-96-3\right)\left(-96-m\right)+7.\left(-96\right)^2\)

\(=\left(-97\right).\left(-98\right).\left(-99\right).\left(-96-m\right)+7.96^2\)

\(=\left(-96\right).\left(-97\right).\left(-98\right).\left(-99\right)-\left(-97\right).\left(-98\right).\left(-99\right).m+7.96^2\)

\(=96.97.98.99+97.98.99m+7.96^2\)

\(A=\frac{P\left(100\right)+P\left(-96\right)}{8}\)

\(=\frac{97.98.99.100-97.98.99m+7.100^2+96.97.98.99+97.98.99m+7.96^2}{8}\)

\(=\frac{97.98.99\left(100+96\right)+7.\left(100^2+96^2\right)}{8}=112244867\)

4 tháng 3 2022

Đặt \(f\left(x\right)=10x\)

Khi đó ta có \(f\left(1\right)=10=P\left(1\right)\)\(f\left(2\right)=20=P\left(2\right)\)\(f\left(3\right)=30=P\left(3\right)\)

Do đó \(P\left(x\right)-f\left(x\right)=g\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

\(\Rightarrow P\left(x\right)=10+g\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

Vì \(P\left(x\right)\)là đa thức bậc 4 mà \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\)là đa thức bậc 3 nên \(g\left(x\right)\)là đa thức bậc 1 hay \(g\left(x\right)=x+n\)

Vậy \(P\left(x\right)=\left(x+n\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)+10\)

\(\Rightarrow P\left(12\right)=\left(12+n\right)\left(12-1\right)\left(12-2\right)\left(12-3\right)=\left(n+12\right).11.10.9=990\left(n+12\right)\)

\(=990n+11880\)

Và \(P\left(-8\right)=\left(-8+n\right)\left(-8-1\right)\left(-8-2\right)\left(-8-3\right)=\left(n-8\right)\left(-9\right)\left(-10\right)\left(-11\right)\)\(=-990\left(n-8\right)=-990n+7920\)

Vậy \(\frac{P\left(12\right)+P\left(-8\right)}{10}+25=\frac{990n+11880-990n+7920}{10}+25=\frac{19800}{10}+25=2005\)

21 tháng 2 2018

Xét đa thức Q(x) = P(x) - 10x ,ta có:

Q(1) = P(1) - 10 = 10 - 10 = 0

Q(2) = P(2) - 20 = 20 - 20 = 0

Q(3) = P(3) - 30 = 30 - 30 = 0

=> x = 1 ; x = 2 ; x = 3 là 3 nghiệm của đa thức Q(x), do đó \(Q\left(x\right)⋮\left(x-1\right)\left(x-2\right)\left(x-3\right)\).

=> Q(x) có dạng : 

Q(x) = (x - 1)(x - 2)(x - 3)(x - a)                       \(\left(a\inℚ\right)\)

Khi đó: P(x) = (x - 1)(x - 2)(x - 3)(x - a) + 10x

Ta có: P(12) = 11.10.9.(12 - a) + 120

           P(-8) = -9.(-10).(-11)(-8 - a) - 80

=> P(12) + P(-8) = 11.1019.(12 - a + 8 + a) + 40 

                           = 11.10.9.20 + 40  = 19840

Vậy P(12) + P(-8) = 19840

20 tháng 2 2018

cái này có trong nâng cao chuyên đề thì phải, nâng cao chuyên đề 8 ấy, e mở ra tham khảo nhá, t nhác vt 

hình như bài 98 thì phải phần đa thức ý

Nâng cao chuyên đề toán 8 đại nhé 

29 tháng 6 2016

ai giải dc ko

10 tháng 11 2021

Đặt \(f\left(x\right)=P\left(x\right)+3x\)

\(f\left(x\right)=P\left(x\right)+3x\\ \Leftrightarrow\left\{{}\begin{matrix}f\left(-2\right)=0\\f\left(-4\right)=0\\f\left(-6\right)=0\end{matrix}\right.\Leftrightarrow f\left(x\right)=\left(x-m\right)\left(x+2\right)\left(x+4\right)\left(x+6\right)\\ \Leftrightarrow P\left(x\right)=\left(x-m\right)\left(x+2\right)\left(x+4\right)\left(x+6\right)+3x\\ \Leftrightarrow\left\{{}\begin{matrix}P\left(-2\right)=0\\P\left(0\right)=-m\cdot2\cdot4\cdot6+0=-48m\\P\left(-8\right)=\left(-8-m\right)\left(-6\right)\left(-4\right)\left(-2\right)-24=48m+360\end{matrix}\right.\)

Do đó \(A=\dfrac{-48m+48m+360+0}{2020}=\dfrac{360}{2020}=\dfrac{18}{101}\)

11 tháng 11 2021

anh ơi đề cho \(P\left(-2\right)=6\) r mà

AH
Akai Haruma
Giáo viên
29 tháng 8 2017

Lời giải:

Ta có thể viết dạng của $f(x)$ như sau:

\(f(x)=(x-1)(x-2)(x-3)(x-t)+g(x)\)

Trong đó, \(t\) là một số bất kỳ nào đó và \(g(x)\) là đa thức có bậc nhỏ hơn hoặc bằng $3$

Giả sử \(g(x)=mx^3+nx^2+px\)

\(\left\{\begin{matrix} f(1)=g(1)=m+n+p=10\\ f(2)=g(2)=8m+4n+2p=20\\ f(3)=g(3)=27m+9n+3p=30\end{matrix}\right.\)

Giải hệ trên thu được \(m=0,n=0,p=10\)

Như vậy \(f(x)=(x-1)(x-2)(x-3)(x-t)+10x\)

Do đó \(\left\{\begin{matrix} f(12)=990(12-t)+120=12000-990t\\ f(-8)=-990(-8-t)-80=7840+990t\end{matrix}\right.\)

\(\Rightarrow \frac{f(12)+f(-8)}{10}+26=\frac{12000+7840}{10}+26=2010\) (đpcm)

26 tháng 6 2017

Ta có: \(P\left(x\right)=x^5+ax^4+bx^3+cx^2+dx+e\)

Suy ra \(P\left(1\right)=1^5+a\cdot1^4+b\cdot1^3+c\cdot1^2+d\cdot1+e=1\)

\(\Rightarrow a+b+c+d+e=0\)

\(P\left(2\right)=2^5+a\cdot2^4+b\cdot2^3+c\cdot2^2+d\cdot2+e=4\)

\(\Rightarrow16a+8b+4c+2d+e+28=0\)

\(P\left(3\right)=3^5+a\cdot3^4+b\cdot3^3+c\cdot3^2+d\cdot3+e=9\)

\(\Rightarrow81a+27b+9c+3d+e+234=0\)

\(P\left(4\right)=4^5+a\cdot4^4+b\cdot4^3+c\cdot4^2+d\cdot4+e=16\)

\(\Rightarrow256a+64b+16c+4d+e+1008=0\)

\(P\left(5\right)=5^5+a\cdot5^4+b\cdot5^3+c\cdot5^2+d\cdot5+e=25\)

\(\Rightarrow625a+125b+25c+5d+e+999=0\)

Thay lẫn lộn vào nhau đi nhé

26 tháng 6 2017

Cho phép lm tiếp....

\(\Rightarrow\left\{{}\begin{matrix}15a+7b+3c+d=-28\\80a+26b+8c+2d=-234\\255a+63b+15c+3d=-1008\\624a+124b+24c+4d=-3100\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}50a-12b+2c=-178\\210a+42b+6c=-924\\564a+96b+12c=-2988\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-15\\b=85\\c=-224\end{matrix}\right.\)

Thay bào pt \(15a+7b+3c+d=-28\) ta có: \(-225+595-672+d=-28\Rightarrow d=274\)

Thay vào pt \(a+b+c+d+e=0\) ta có:

\(-15+85-224+274+e=0\Rightarrow e=-120\)

Thay a,b,c,d,e vào r` tính là ra!

p/s: cho a,b,c bấm casio nhé!