Cho tam giác ABC nhọn gọi AH,BI,CK là 3 đường cao. C/m tam giác AIK đồng dạng tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔKHB vuông tại K và ΔIHC vuông tại I có
\(\widehat{KHB}=\widehat{IHC}\)(hai góc đối đỉnh)
Do đó: ΔKHB\(\sim\)ΔIHC(g-g)
2: Xét tứ giác AKHI có
\(\widehat{AKH}+\widehat{AIH}=180^0\)
Do đó: AKHI là tứ giác nội tiếp
Suy ra: \(\widehat{AIK}=\widehat{AHK}\)
mà \(\widehat{AHK}=\widehat{C}\)
nên \(\widehat{AIK}=\widehat{ACB}\)
3: Xét ΔAIK và ΔACB có
\(\widehat{AIK}=\widehat{ACB}\)
\(\widehat{KAI}\) chung
Do đó: ΔAIK∼ΔACB
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
Ban đầu xét tam giác AIB và tam giác AKC có :
góc BAC chung ; góc AKC= góc AIB =90 độ (g)
Do vậy tam giác AIB đồng dạng tam giác AKC (g-g)
=> AI/AB=AK/AC (1)
Xét tam giác AIK và tam giác ABC có :
góc BAC chung ; AI/AB=AK/AC (theo (1))
Do vậy tam giác AIK đồng dạng tam giác ABC (c-g-c)
xét tam giác AIB và tam giác AKC có :
góc BAC chung ; góc AKC= góc AIB =90 độ (g)
Do vậy tam giác AIB đồng dạng tam giác AKC (g-g)
=> AI/AB=AK/AC (1)
Xét tam giác AIK và tam giác ABC có :
góc BAC chung ; AI/AB=AK/AC (theo (1))
Do vậy tam giác AIK đồng dạng tam giác ABC (c-g-c)