Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hình bình hành
b: Xét ΔAKB vuông tại K và ΔAIC vuông tại I có
góc KAB chung
=>ΔAKB đồng dạng với ΔAIC
=>AK/AI=AB/AC
=>AK*AC=AB*AI; AK/AB=AI/AC
c: Xét ΔAKI và ΔABC có
AK/AB=AI/AC
góc KAI chung
=>ΔAKI đồng dạng với ΔABC
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
a) Xét ΔABK vuông tại K và ΔACI vuông tại I có
\(\widehat{BAK}\) chung
Do đó: ΔABK∼ΔACI(g-g)
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AI\cdot AB=AK\cdot AC\)(đpcm)
b) Ta có: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(cmt)
nên \(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)
Xét ΔAIK và ΔACB có
\(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)(cmt)
\(\widehat{IAK}\) chung
Do đó: ΔAIK\(\sim\)ΔACB(c-g-c)
a) Xét ΔKHB vuông tại K và ΔIHC vuông tại I có
\(\widehat{KHB}=\widehat{IHC}\)(hai góc đối đỉnh)
Do đó: ΔKHB\(\sim\)ΔIHC(g-g)
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
b: góc BAD+góc CAD=90 độ
góc BDA+góc HAD=90 độ
mà góc CAD=góc HAD
nên góc BAD=góc BDA
=>ΔBAD cân tại B
=>BF vuông góc AD tại F
Xét ΔEFA vuông tại F và ΔEHB vuôg tại H có
góc FEA=góc HEB
=>ΔEFA đồng dạng với ΔEHB
=>EF/EH=EA/EB
=>EF*EB=EA*EH
c: Xét ΔBAK và ΔBDK có
BA=BD
góc ABK=góc DBK
BK chung
=>ΔBAK=ΔBDK
=>góc BDK=90 độ
=>DK vuông góc BC
=>DK//AH