Cho a3+b3+c3=3abc. Tính giá trị:
P = \(\left(1+\frac{a}{b}\right)\)\(\left(1+\frac{b}{c}\right)\)\(\left(1+\frac{c}{a}\right)\)
Các bạn giải giúp mik nhanh nha, mik sắp pk nộp ròi ~~~!!!
Ai nhanh và đúng mik tick !!!~~~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{2003}\right)\left(-1\frac{1}{2004}\right)\)
\(=-\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{2004}{2003}.\frac{2005}{2004}\)
\(=-\frac{3.4.5.....2004.2005}{2.3.4.....2003.2004}=\frac{-2005}{2}\)
Do \(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Mà \(a+b+c\ne0\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\)
Khi đó:
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)\(=\left(a^2+b^2+c^2\right)+2\left(a^2+b^2+c^2\right)=3\left(a^2+b^2+c^2\right)\)
Vậy: \(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+b^2+c^2}{3\left(a^2+b^2+c^2\right)}=\frac{1}{3}\)
\(\left(4\frac{46}{65}+x\right).1\frac{1}{12}=5,75\)
\(\Rightarrow\frac{306}{65}+x.\frac{13}{12}=\frac{23}{4}\)
\(\Rightarrow\frac{51}{10}+\frac{13}{12}x=\frac{23}{4}\)
\(\Rightarrow306x=65x=345\)
\(\Rightarrow65x=39\)
\(\Rightarrow x=\frac{3}{5}\)
b, \(\frac{5}{4}-\left(\frac{3}{2}x+0,5\right)=1\frac{1}{4}\)
\(\Rightarrow\frac{5}{4}-\frac{3}{2}x-0,5=\frac{5}{4}\)
\(\Rightarrow\frac{5}{4}-\frac{3}{2}x-\frac{1}{2}=\frac{5}{4}\)
\(\Rightarrow\frac{3}{4}-\frac{3}{2}x=\frac{5}{4}\)
\(\Rightarrow3-6x=5\)
\(\Rightarrow-6x=2\)
\(\Rightarrow x=-\frac{1}{3}\)
Phần b) chị sai nhé ! Dấu [ ] là phần nguyên nâng cao của lớp 6 nhé.
a, => |5/3.x| = 1/6
=> 5/3.x = -1/6 hoặc 5/3.x = 1/6
=> x = -1/10 hoặc x = 1/10
Tk mk nha
Trả lời
Hình như b viết thiếu đề hay sao ý
Ng ta ko cho 3a^2+3b^2 bằng bao nhiêu ag
Có:
\(a^3+b^3+c^3=3abc\\\Leftrightarrow a^3+b^3+c^3-3abc=0\\\Leftrightarrow (a+b)^3+c^3-3ab(a+b)-3abc=0\\\Leftrightarrow (a+b+c)^3-3(a+b)c(a+b+c)-3ab(a+b+c)=0\\\Leftrightarrow (a+b+c)[(a+b+c)^2-3(a+b)c-3ab]=0\\\Leftrightarrow (a+b+c)(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab)=0\\\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\\\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0(vì.a+b+c\ne0)\\\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0\\\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)=0\\\Leftrightarrow (a-b)^2+(b-c)^2+(a-c)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(a-c\right)^2\ge0\forall a,c\end{matrix}\right.\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)
Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
nên: \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow a=b=c\)
Thay \(a=b=c\) vào \(A\), ta được:
\(A=\dfrac{\left(2016+\dfrac{a}{a}\right)+\left(2016+\dfrac{b}{b}\right)+\left(2016+\dfrac{c}{c}\right)}{2017^3}\left(a,b,c\ne0\right)\)
\(=\dfrac{2016+1+2016+1+2016+1}{2017^3}\)
\(=\dfrac{2016\cdot3+1\cdot3}{2017^3}\)
\(=\dfrac{3\cdot\left(2016+1\right)}{2017^3}\)
\(=\dfrac{3}{2017^2}\)
Vậy: ...
Ok , mình sẽ làm !
Ta có :
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b}{c}-1+1=\frac{b+c}{a}-1+1=\frac{c+a}{b}-1+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\left(1\right)\)
+) Trường hợp 1 : \(a+b+c=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
Ta có :
\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{-a}{a}.\frac{-c}{c}.\frac{-b}{b}\)
\(\Leftrightarrow P=-1.\left(-1\right).\left(-1\right)=-1\)
+) Trường hợp 2 : \(a+b+c\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau cho ( 1 ) , ta có :
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
Ta lại có :
\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
\(\Leftrightarrow P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{c+b}{b}\)
\(\Leftrightarrow P=2.2.2=8\)
Vậy....................
bài khó nhờ
Ta có : a³ + b³ + c³ = 3abc
<=> (a + b + c)(a² + b² + c² - ab - bc - ca) = 0
Hoặc a + b + c = 0
Hoặc (a² + b² + c² - ab - bc - ca) = 0
TH1: a + b + c = 0 => a = -(b + c); b = -( a + c); c = -( a + b)
=> A = [1 - (b +c)/b][1 - (a + c)/c] [1 - (a + b)/a]
=> A =[1 - 1 - c/b] [1 - 1 - a/c] [1 - 1 - b/a]
=> A = (-c/b)(-a/c)(-b/a) = -1
TH2: (a² + b² + c² - ab - bc - ca) = 0 <=> (a - b)² +(b - c)² + (c - a)² = 0
=> a - b = b - c = c - a = 0 hay a = b = c
=> A = (1 + 1)(1 + 1)(1+ 1) = 8