Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a³ + b³ + c³ = 3abc
<=> (a + b + c)(a² + b² + c² - ab - bc - ca) = 0
Hoặc a + b + c = 0
Hoặc (a² + b² + c² - ab - bc - ca) = 0
TH1: a + b + c = 0 => a = -(b + c); b = -( a + c); c = -( a + b)
=> A = [1 - (b +c)/b][1 - (a + c)/c] [1 - (a + b)/a]
=> A =[1 - 1 - c/b] [1 - 1 - a/c] [1 - 1 - b/a]
=> A = (-c/b)(-a/c)(-b/a) = -1
TH2: (a² + b² + c² - ab - bc - ca) = 0 <=> (a - b)² +(b - c)² + (c - a)² = 0
=> a - b = b - c = c - a = 0 hay a = b = c
=> A = (1 + 1)(1 + 1)(1+ 1) = 8
https://olm.vn/hoi-dap/detail/94359836666.html
tương tự bài ở link này (mình gửi cho)
Học tốt!!!!!!!!!!!!!!
Ta có : \(\widehat{A}=60^o\) nên trong tam giác ABC có :
\(\widehat{B}+\widehat{C}=180^o-60^o=120^o\)
\(\Rightarrow\widehat{B_1}+\widehat{C_1}=120^o:2=60^o\)( góc ngoài tam giác BIC )
Kẻ tia phân giác ID của \(\Delta BIC\) .
Ta có : \(\widehat{BID}=\widehat{DIC}=60^o\)
\(\widehat{B_1}=\widehat{B_2}\)
BI cạnh chung ( \(\widehat{BIN}=\widehat{BID}=60^o\))
Vậy \(\Delta BIN=\Delta BID\left(g.c.g\right)\)
Suy ra : BN = BD (1)
Chứng minh tương tự ( giống phần trên ạ ) , \(\Delta CIM=\Delta CID\left(g.c.g\right)\)
Suy ra : CM = CD (2)
Từ (1) và (2) suy ra : BN + CM = BD + CD = BC
Vậy BN + CM = BC
Theo đề bài,ta có:
(a+3c)+(a+2c)=2016+2017=4033
=>a+3c+a+2b=4033
=>2a+2b+2c+c=4033
=>2(a+b+c)+c=4033
Để a+b+c nhỏ nhất thì c lớn nhất => c=9
=>2(a+b+c)=4033-9
=>2(a+b+c)=4024
P=a+b+c=2012
Vậy giá trị nhỏ nhất của a+b+c=2012
Ko biết có đúng ko nữa.
Trả lời
Hình như b viết thiếu đề hay sao ý
Ng ta ko cho 3a^2+3b^2 bằng bao nhiêu ag
Ta có
3a^2+3b^2=10ab
3a^2-10ab+3b^2=0
3a^2-9ab-ab+3b^2=0
3a(a-3b)-b(a-3b)=0
(a-3b)(3a-b)=0
=>a-3b=0=>a=3b
=>3a-b=0=>3a=b
thay vào biểu thức
P=a-b/a+b=3b-b/3b+b=2b/4b=1/2
vậy P=1/2