Tính:
a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
b) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+5}\right)^2\)(ý này thấy đề hơi sai sai, mn sửa lại giúp ạ)
c) \(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{5}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
d) \(\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\)
Gọi \(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(A\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)
\(A\sqrt{2}=\sqrt{7}-1-\sqrt{7}-1=-2\)
Vậy \(A=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
Đặt \(B=\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)
\(=3-\sqrt{5}+3+\sqrt{5}+2\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)
\(=6+2\sqrt{3^2-\sqrt{5}^2}\)
\(=6+4=10\)