K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

a) 5n . 5n + 2 = 650

=> 5n + 5n . 5= 650

=> 5n . (1 + 52) = 650

=> 5n . 26          = 650

=> 5n                  = 650 : 26 

=> 5n                  = 25

=> 5n                  = 52

=>   n                 = 2

b) 3n + 3 + 5.3n = 864

=> 3n . 33 + 5.3n = 864

=> 3n . (33 + 5)   = 864

=> 3n . 32           = 864

=> 3n                  = 864 : 32

=> 3n                  = 27

=> 3n                  = 33

=>   n                  = 3

14 tháng 12 2023

5n+5n.52=650

5n(1+52)=650

5n.26=650

=>5n=650:26

=>5n=25=52

=>n=2

 

 

14 tháng 11 2017

a) n = 6.

b) n = 4.

14 tháng 11 2017

a)

\(3^{n+1}+5.3^{n-2}=2592\)

\(\Rightarrow3^{n+1}+5.3^{n+1-3}=2592\)

\(\Rightarrow3^{n+1}+\dfrac{1}{27}.5.3^{n+1}=2592\)

\(\Rightarrow3^{n+1}+\dfrac{5}{27}.3^{n+1}=2592\)

\(\Rightarrow3^{n+1}.\left(\dfrac{5}{27}+1\right)=2592\)

\(\Rightarrow3^{n+1}.\dfrac{32}{27}=2592\)

\(\Rightarrow3^{n+1}=2187\)

\(\Rightarrow3^{n+1}=3^7\)

\(\Rightarrow n+1=7\)

\(\Rightarrow n=6\)

b)

\(3^{n+2}.5.3^{n-1}=864\)

\(\Rightarrow3^{n+2}+\dfrac{1}{27}.5.3^{n+2}=864\)

\(\Rightarrow3^{n+2}\left(\dfrac{5}{27}+1\right)=864\)

\(\Rightarrow3^{n+2}.\dfrac{32}{27}=864\)

\(\Rightarrow3^{n+2}=729\)

\(\Rightarrow3^{n+2}=3^6\)

\(\Rightarrow n+2=6\)

\(\Rightarrow n=4\)

14 tháng 11 2017

câu b viết sai đề kìa

26 tháng 10 2023

\(3^{5n+2}+3^{5n+1}-3^{5n}=3^{5n}\left(3^2+3-1\right)=11.3^{5n}⋮11\)

26 tháng 10 2023

\(3^{5n+2}+3^{5n+1}-3^{5n}(n\in N^*)\\=3^{5n}\cdot3^2+3^{5n}\cdot3-3^{5n}\\=3^{5n}\cdot(3^2+3-1)\\=3^{5n}\cdot11\)

Vì \(3^{5n}\cdot11\vdots11\) 

nên biểu thức \(3^{5n+2}+3^{5n+1}-3^{5n}\vdots11\)

a: \(\lim\limits\dfrac{5n+1}{2n}=\lim\limits\dfrac{\dfrac{5n}{n}+\dfrac{1}{n}}{\dfrac{2n}{n}}=\lim\limits\dfrac{5+\dfrac{1}{n}}{2}=\dfrac{5+0}{2}=\dfrac{5}{2}\)

b: \(\lim\limits\dfrac{6n^2+8n+1}{5n^2+3}\)

\(=\lim\limits\dfrac{\dfrac{6n^2}{n^2}+\dfrac{8n}{n^2}+\dfrac{1}{n^2}}{\dfrac{5n^2}{n^2}+\dfrac{3}{n^2}}\)

\(=\lim\limits\dfrac{6+\dfrac{8}{n}+\dfrac{1}{n^2}}{5+\dfrac{3}{n^2}}\)

\(=\dfrac{6+0+0}{5+0}=\dfrac{6}{5}\)

c: \(\lim\limits\dfrac{3^n+2^n}{4\cdot3^n}\)

\(=\lim\limits\dfrac{\dfrac{3^n}{3^n}+\left(\dfrac{2}{3}\right)^n}{4\cdot\left(\dfrac{3^n}{3^n}\right)}\)

\(=\lim\limits\dfrac{1+\left(\dfrac{2}{3}\right)^n}{4}=\dfrac{1+0}{4}=\dfrac{1}{4}\)

d: \(\lim\limits\dfrac{\sqrt{n^2+5n+3}}{6n+2}\)

\(=\lim\limits\dfrac{\sqrt{\dfrac{n^2}{n^2}+\dfrac{5n}{n^2}+\dfrac{3}{n^2}}}{\dfrac{6n}{n}+\dfrac{2}{n}}\)

\(=\lim\limits\dfrac{\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{6+\dfrac{2}{n}}\)

\(=\dfrac{\sqrt{1+0+0}}{6}=\dfrac{1}{6}\)

4 tháng 11 2023

\(a,lim\dfrac{5n+1}{2n}=lim\dfrac{\dfrac{5n}{n}+\dfrac{1}{n}}{\dfrac{2n}{n}}=lim\dfrac{5+\dfrac{1}{n}}{2}=\dfrac{5}{2}\\ b,lim\dfrac{6n^2+8n+1}{5n^2+3}=lim\dfrac{\dfrac{6n^2}{n^2}+\dfrac{8n}{n^2}+\dfrac{1}{n^2}}{\dfrac{5n^2}{n^2}+\dfrac{3}{n^2}}=lim\dfrac{6+\dfrac{8}{n}+\dfrac{1}{n^2}}{5+\dfrac{3}{n^2}}=\dfrac{6}{5}\)

\(c,lim\dfrac{3^n+2^n}{4.3^n}=\dfrac{\dfrac{3^n}{3^n}+\dfrac{2^n}{3^n}}{\dfrac{4.3^n}{3^n}}=\dfrac{1+\left(\dfrac{2}{3}\right)^n}{4}=\dfrac{1}{4}\)

\(d,lim\dfrac{\sqrt{n^2+5n+3}}{6n+2}=lim\dfrac{\sqrt{\dfrac{n^2+5n+3}{n^2}}}{\dfrac{6n}{n}+\dfrac{2}{n}}=lim\dfrac{\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{6+\dfrac{2}{n}}=\dfrac{1}{6}\)