Tìm x,y nguyên biết:
a) \(2x+3xy-y=2\)
b) \(x^2-2xy+6y=11\)
___________________________Các bn ơi giúp mik vs nha!!!_________________________
____________________Bn nào giải chi tiết + nhanh + đúng mik tick cho_________________________
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2xy+2x-3y=6$
$\Rightarrow 2x(y+1)-3y=6$
$\Rightarrow 2x(y+1)-3(y+1)=3$
$\Rightarrow (2x-3)(y+1)=3$
Với $x,y$ là số nguyên thì $2x-3, y+1$ cũng là số nguyên. Mà $(2x-3)(y+1)=3$ nên ta có các TH sau:
TH1: $2x-3=1; y+1=3\Rightarrow x=2; y=2$ (tm)
TH2: $2x-3=-1; y+1=-3\Rightarrow x=1; y=-4$ (tm)
TH3: $2x-3=3; y+1=1\Rightarrow x=3; y=0$ (tm)
TH4: $2x-3=-3; y+1=-1\Rightarrow x=0; y=-2$ (tm)
Theo bài ra : n có 48 ước
Mà ax.by = n
=> (x+1)(y+1) = 48
x(y+1)+y+1=48
xy+x+y+1=48
xy+12+1=48
xy+13=48
xy=48-13
xy=35
Mà 35=1.25=5.7
Vì x>y
+ Nếu x=35 , y=1 thì n= 235.3
+ Nếu x=7 , y=5 thì n=27.35=31104
Trong 2 số trên thì số 31104 nhỏ hơn => n=31104
Tick nha
bài của Hatsune Miku viết nhầm chỗ 35 = 1.35 chứ không phải 1.25
1.
PT $\Leftrightarrow (x^2+2xy+y^2)-(y^2+6y+9)=0$
$\Leftrightarrow (x+y)^2-(y+3)^2=0$
$\Leftrightarrow (x+y-y-3)(x+y+y+3)=0$
$\Leftrightarrow (x-3)(x+2y+3)=0$
$\Rightarrow x-3=0$ hoặc $x+2y+3=0$
Nếu $x-3=0\Leftrightarrow x=3$. Vậy $(x,y)=(3,a)$ với $a$ nguyên bất kỳ.
Nếu $x+2y+3=0\Leftrightarrow x=-2y-3$ lẻ. Vậy $(x,y)=(-2a-3,a)$ với $a$ nguyên bất kỳ.
2.
PT $\Leftrightarrow x^2=(y^2+2y+1)+12$
$\Leftrightarrow x^2=(y+1)^2+12\Leftrightarrow x^2-(y+1)^2=12$
$\Leftrightarrow (x-y-1)(x+y+1)=12$
Vì $x-y-1, x+y+1$ là số nguyên và cùng tính chẵn lẻ nên xảy ra các TH sau:
TH1: $x-y-1=2; x+y+1=6\Rightarrow x=4; y=1$
TH2: $x-y-1=6; x+y+1=2\Rightarrow x=4; y=-3$
TH3: $x-y-1=-2; x+y+1=-6\Rightarrow x=-4; y=-3$
TH4: $x-y-1=-6; x+y+1=-2\Rightarrow x=-4; y=1$
\(2x^2\:+2y^2\:-2xy\:-6y\:+21\)
\(=2\left(x^2-xy+\frac{y^2}{4}\right)+\frac{3}{2}\left(y^2-4y+4\right)+15\\=2\left(x-\frac{y}{2}\right)^2+\frac{3}{2}\left(y-2\right)^2+15\:\ge \:15\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-\frac{y}{2}=0\\y-2=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(Min_P=15\) khi \(\left\{\begin{matrix}x=1\\y=2\end{matrix}\right.\)