Cho tam giác DEF nhọn, vẽ ra phía ngoài tam giác đó các tam giác đều DEC và DFB. Gọi P,Q lần lượt là trung điểm của EB và FC. CM : tam giác DPQ đều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm DC và BE, I là giao điểm DC và AB
Ta có
góc DAB= góc EAC (=90)
góc BAC= góc BAC( góc chung)
-> góc DAB+ góc BAC= góc EAC+ góc BAC
-> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE ta có
AD=AB ( tam giác ABD vuông cân tại A)
AC=AE ( tam giác AEC vuông cân tại A)
góc DAC=góc BAE ( cmt)
-. tam giac DAC= tam giac BAE (c-g-c)
-> góc DAI= góc IBO ( 2 góc tương ứng)
ta có
góc DAI+ góc DIA=90 ( tam giác DAI vuông tại A)
góc DAI= góc IBO (cmt)
góc DIA= góc BIO ( 2 góc đối đỉnh)
--> góc BIO+góc IBO =90
Xét tam giác BIO ta có
góc BIO + góc IBO + góc BIO=180 ( tổng 3 góc trong tam giác)
90+ goc BIO=180
góc BIO=180-90=90
=> BE vuông góc DC tại O
Xét tam giác DBC ta có
M là trung điểm BD (gt)
P là trung điểm BC (gt)
-> MP la đường trung bình tam giác DBC
-> MP// DC và MP=1/2 DC
cmtt PN là đường trung bình tam giác BEC
-> PN//BE và PN=1/2BE
ta có
DC vuông góc BE tại O (cmt)
DC//MP (cmt)
-> MP vuông góc BE
mà BE// PN (cmt)
nên MP vuông góc PN tại P
--> tam giác MNP vuông tại P (1)
ta có
MP=1/2 DC (cmt)
PN=1/2BE (cmt)
DC=BE ( tam giac DAC = tam giac BAE)
--> MP=PN (2)
từ (1) và (2) suy ra tam giac MNP vuông cân tại P
gọi I, K là trung điểm của AB, Ac. cm cho AKDI là hình bình hành. ta có tam giác EID=KDF=AEF(c.g.c)=>EF=ED=DF=> tam giác DEF đều