K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì M là trung điểm AB 

=> AM = MB 

Vì N là trung điểm BC 

=> BN = NC 

=> MN là đường trung bình ∆ABC 

=> MN//AC 

=> AMNC là hình thang (dpcm) 

2) Vì AB = AD (gt)

=> ∆ABD cân tại A 

=> ABD = ADB 

Ta có AM = MB (cmt)

Q là trung điểm AD 

=> AQ = QD 

=> MQ là đường trung bình ∆ABD 

=> QM//DB 

=> QMBD là hình thang 

Mà ABD = ADB (cmt)

= > QMBD là hình thang cân (dpcm)

a) Xét tứ giác AQCP có : 

M là trung điểm PQ ( Q là điểm đối xứng với P qua M )

M là trung điểm AC 

=> AQCP là hình bình hành 

Vì AP\(\perp\)BC 

=> AQCP là hình chữ nhật 

b) Vì AQCP là hình chữ nhật

=> AQ = PC 

=> AQ//PC 

=> AQ//BP ( P\(\in\)BC )

Vì ∆ABC cân tại A 

Mà AP là đường cao 

=> AP là phân giác và trung trực 

=> PC = PB 

Mà AQ = PC 

=> BP = AQ 

Xét tứ giác AQPB có : 

AQ//BP (cmt)

AQ = BP (cmt)

=> AQPB là hình bình hành 

c) Vì M là trung điểm AC 

MN //BC 

=> N là trung điểm AB 

Xét ∆ABC có : 

N là trung điểm AB 

P là trung điểm BC ( AP là trung tuyến) 

=> NP là đường trung bình ∆ABC 

=> NP//AC 

=> NP//AM ( M \(\in\)BC )

Xét ∆ABC có : 

M là trung điểm AC 

P là trung điểm BC

=> MP là đường trung bình ∆ABC

=> MP//AB

=> MP//NA ( N \(\in\)AB )

Xét tứ giác ANPM có : 

MP//NA (cmt)

AM//NP (cmt)

=> ANPM là hình bình hành 

Mà AP là phân giác BAC (cmt)

=> NAMP là hình thoi

22 tháng 7 2019

A B C D M N O

1) Xét tam giác AOM và tam giác CON có:

OA = OC ( O là giao điểm hai đường chéo của hình bình hành)

^AOM =^NOC ( đối đỉnh)

^MAO =NCO ( so le trong , AM// NC)

=> Tam giác AOM = tam giác CON (1)

=> OM=ON 

2) Vì AB//DC

=> AM//NC

và từ (1) suy ra AM=NC

=> AMNC là hình bình hành

1) Vì AH\(\perp\)DC 

BK\(\perp\)DC 

=> AH//BK 

Mà BAH + AHK = 180° ( trong cùng phía) 

=> BAH = 90° 

Mà ABK + BKH = 180° ( trong cùng phía) 

=> ABK = 90° 

Mà BAH = AHK = 90° 

Mà 2 góc này ở vị trí trong cùng phía 

=> AB//HK 

=> ABKH là hình thang cân 

=> ABKH là hình thang cân 

=> AB = HK , AH = BK

b) Vì ABCD là hình thang cân 

=> AD = BC 

=> ADC = BCD 

Xét ∆ vuông AHD và ∆ vuông BKC ta có : 

AD = BC 

ADC = BCD 

=> ∆AHD = ∆BKC (ch-gn)

Mà DH = KC ( tương ứng) 

c) Ta có : 

DH + HK + KC = DC

Mà HK = AB 

=> DH + AB + KC = DC

DH + KC = DC - AB 

Mà DH = KC 

=> DH = \(\frac{1}{2}\)( CD - AB )

thêm hình cho bài nó hoàn chỉnh :))

A B D C H K