Cho a,b,c thõa mãn \(ac\ge2\left(b+d\right)\)
CM ít nhất một trong 2 pt sau có nghiệm
x2+ax+b=0
x2+cx+d=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử không có BĐT nào sai, ta có:
\(4\left(b+d\right)>a^2+c^2\ge2ac\)
Mà \(ac\ge2\left(b+d\right)\)
\(\Rightarrow4\left(b+d\right)>4\left(b+d\right)\) Vô lí
=> có ít nhất 1 bđt sai
Ta có :\(ac\ge2\left(b+d\right)\)\(\Leftrightarrow2ac\ge4\left(b+d\right)\)(1)
Giả sử hai bất đẳng thức \(a^2< 4b;c^2< 4d\)đều đúng , cộng vế với vế hai bất đẳng thức trên ta đc
\(a^2+c^2< 4b+4d\Leftrightarrow a^2+c^2< 4\left(b+d\right)\)
Thay (1) vào bất đẳng thức trên ta đc:\(a^2+c^2< 2ac\)\(\Leftrightarrow\)\(a^2-2ac+c^2< 0\)
\(\Leftrightarrow\)\(\left(a-c\right)^2< 0\)=> vô lí
Vậy có ít nhất một trong 2 bất đẳng thức trên là sai.
\(\left\{{}\begin{matrix}ax^2+by+c=0\\cx^2+by+a=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}ax^2+by=-c\\cx^2+by=-a\end{matrix}\right.\)
vì pt có 1 nghiệm duy nhất
nên\(\dfrac{a}{c}\ne\dfrac{b}{b}\)⇔\(\dfrac{a}{c}\ne1\)⇔\(a\ne c\)
Đặt \(f\left(x\right)=ax^{3\:}+bx^2+cx+d\left(a\ne0\right)\)
Nếu \(a< 0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=+\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=-\infty\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)\in\left(-\infty;+\infty\right)\), với \(x\in\left(-\infty;+\infty\right)\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm
Nếu \(a>0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=+\infty\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm
Lời giải:
Giả sử cả 2 pt trên đều không có nghiệm.
Khi đó:
\(\left\{\begin{matrix} \Delta_1=a^2-4b< 0\\ \Delta_2=c^2-4d< 0\end{matrix}\right.\)
\(\Rightarrow a^2+c^2< 4(b+d)\)
Kết hợp với đk: \(ac\geq 2(b+d)\Rightarrow 2ac> a^2+c^2\)
\(\Leftrightarrow a^2+c^2-2ca< 0\Leftrightarrow (a-c)^2< 0\) (vô lý)
Do đó điều giả sử là sai.
Tức là ít nhất 1 trong 2 pt trên phải có nghiệm.