Thực hiện phép tính:
\(\frac{1}{2}\sqrt{4}-\sqrt{25}\)
~ Giúp mk với, mk tk cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{2-1}{\sqrt{2}+1}+\frac{3-2}{\sqrt{3}+\sqrt{2}}+\frac{4-3}{\sqrt{4}+\sqrt{3}}+...+\frac{100-99}{\sqrt{100}+\sqrt{99}}.\)
\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2}+1}+\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}+\frac{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}{\sqrt{4}+\sqrt{3}}+...\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)
\(=\sqrt{100}-1=10-1=9.\)
\(E=\frac{2}{\sqrt{3}}+\frac{\sqrt{2}}{3}+\frac{2}{\sqrt{3}}.\left(\frac{5}{12}-\frac{1}{\sqrt{6}}\right)\)
\(E=\frac{2}{\sqrt{3}}+\frac{\sqrt{2}}{3}+\frac{5\sqrt{6}-12}{18\sqrt{2}}\)
\(E=\frac{36\sqrt{2}}{18\sqrt{6}}+\frac{12\sqrt{3}}{18\sqrt{6}}+\frac{\left(5\sqrt{6}-12\right).\sqrt{3}}{18\sqrt{3}}\)
\(E=\frac{36\sqrt{2}+12\sqrt{3}+\left(5\sqrt{6}-12\right).\sqrt{3}}{18\sqrt{6}}\)
\(E=\frac{51\sqrt{2}}{18\sqrt{6}}\)
\(E=\frac{17\sqrt{2}}{6\sqrt{6}}\)
\(E=\frac{17\sqrt{2}}{2.3\sqrt{2}.\sqrt{3}}\)
\(E=\frac{17}{\sqrt{2}.3\sqrt{2}.\sqrt{3}}\)
\(E=\frac{17}{6\sqrt{3}}\)
\(E=\frac{17\sqrt{3}}{18}\)
a) \(A=\sqrt{9a}-\sqrt{16a}-\sqrt{49a}=3\sqrt{a}-4\sqrt{a}-7\sqrt{a}=-8\sqrt{a}\)
b) \(B=\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}}-\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}}-\left(\sqrt{3}+\sqrt{2}\right)\)
\(=2+\sqrt{3}+\sqrt{2}+1-\sqrt{3}-\sqrt{2}=3\)
\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)\(=\frac{4+2\sqrt{3}}{\sqrt{4}+\sqrt{4+2\sqrt{3}}}+\frac{4-2\sqrt{3}}{\sqrt{4}-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{4+2\sqrt{3}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{4-2\sqrt{3}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)\(=\frac{4+2\sqrt{3}}{2+\sqrt{3}+1}+\frac{4-2\sqrt{3}}{2-\sqrt{3}+1}\)
\(=\frac{\left(\sqrt{3}+1\right)^2}{3+\sqrt{3}}+\frac{\left(\sqrt{3}-1\right)^2}{3-\sqrt{3}}\)
\(=\frac{\left(\sqrt{3}+1\right)^2}{\sqrt{3}\left(\sqrt{3}+1\right)}+\frac{\left(\sqrt{3}-1\right)^2}{\sqrt{3}\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+1}{\sqrt{3}}+\frac{\sqrt{3}-1}{\sqrt{3}}\)
\(=\frac{2\sqrt{3}}{\sqrt{3}}=2\)
a: Ta có: \(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)
\(=\sqrt{7}+\sqrt{3}+3-\sqrt{3}-\sqrt{7}\)
=3
\(-\sqrt{25}+\sqrt{\frac{9}{4}}\)
\(=-5+\frac{3}{2}\)
\(=\frac{-7}{2}\)
chúc bạn học tốt
a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(=2\sqrt{5}+2+\sqrt{5}-2\)
\(=3\sqrt{5}\)
b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
\(=3-2\sqrt{2}+2\sqrt{2}-1\)
=2
c) \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)
\(=2-\sqrt{2}+3\sqrt{2}-2\)
\(=2\sqrt{2}\)
\(a,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\left(\sqrt{20}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)
\(=\sqrt{1}=1\)
b,c
\(\sqrt{13+4\sqrt{3}}=\sqrt{13+2\sqrt{12}}=\sqrt{12}+1=2\sqrt{3}+1\)
=>BT=\(\sqrt{5-\left(2\sqrt{3}+1\right)}+\sqrt{3+\left(2\sqrt{3}+1\right)}\)
\(=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
c,\(=\sqrt{1+\sqrt{3+2\sqrt{3}+1}}+\sqrt{1-\sqrt{3-\left(2\sqrt{3}-1\right)}}\)
\(=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
\(\frac{1}{2}\sqrt{4}-\sqrt{25}\)
\(=\frac{1}{2}\cdot2-5\)
\(=1-5\)
\(=4\)
Chúc bạn học tốt
mk nhầm phải bằng -4 nha