Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{2-1}{\sqrt{2}+1}+\frac{3-2}{\sqrt{3}+\sqrt{2}}+\frac{4-3}{\sqrt{4}+\sqrt{3}}+...+\frac{100-99}{\sqrt{100}+\sqrt{99}}.\)
\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2}+1}+\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}+\frac{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}{\sqrt{4}+\sqrt{3}}+...\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)
\(=\sqrt{100}-1=10-1=9.\)
\(E=\frac{2}{\sqrt{3}}+\frac{\sqrt{2}}{3}+\frac{2}{\sqrt{3}}.\left(\frac{5}{12}-\frac{1}{\sqrt{6}}\right)\)
\(E=\frac{2}{\sqrt{3}}+\frac{\sqrt{2}}{3}+\frac{5\sqrt{6}-12}{18\sqrt{2}}\)
\(E=\frac{36\sqrt{2}}{18\sqrt{6}}+\frac{12\sqrt{3}}{18\sqrt{6}}+\frac{\left(5\sqrt{6}-12\right).\sqrt{3}}{18\sqrt{3}}\)
\(E=\frac{36\sqrt{2}+12\sqrt{3}+\left(5\sqrt{6}-12\right).\sqrt{3}}{18\sqrt{6}}\)
\(E=\frac{51\sqrt{2}}{18\sqrt{6}}\)
\(E=\frac{17\sqrt{2}}{6\sqrt{6}}\)
\(E=\frac{17\sqrt{2}}{2.3\sqrt{2}.\sqrt{3}}\)
\(E=\frac{17}{\sqrt{2}.3\sqrt{2}.\sqrt{3}}\)
\(E=\frac{17}{6\sqrt{3}}\)
\(E=\frac{17\sqrt{3}}{18}\)
\(\frac{\sqrt{2}+\sqrt{\frac{3}{2}}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}=0,7886751346+\frac{\sqrt{2}-\sqrt{\frac{3}{2}}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=0,1556181798=1\)
Ta có:
\(B=\frac{\sqrt{2+\sqrt{3}}}{2}\div\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
\(B=\frac{\sqrt{4+2\sqrt{3}}}{2}\div\left(\frac{\sqrt{4+2\sqrt{3}}}{2}-\frac{2\sqrt{3}}{3}+\frac{\sqrt{4+2\sqrt{3}}}{2\sqrt{3}}\right)\)
\(B=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}\div\left(\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}-\frac{2\sqrt{3}}{3}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2\sqrt{3}}\right)\)
\(B=\frac{\sqrt{3}+1}{2}\div\left(\frac{\sqrt{3}+1}{2}-\frac{2\sqrt{3}}{2}+\frac{\left(\sqrt{3}+1\right)\sqrt{3}}{6}\right)\)
\(B=\frac{\sqrt{3}+1}{2}\div\left[\frac{3\left(\sqrt{3}+1\right)-6\sqrt{3}+3+\sqrt{3}}{6}\right]\)
\(B=\frac{\sqrt{3}+1}{2}\div\frac{6-2\sqrt{3}}{6}\)
\(B=\frac{\sqrt{3}+1}{2}.\frac{6}{6-2\sqrt{3}}\)
\(B=\frac{3+2\sqrt{3}}{2}\)
\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)\(=\frac{4+2\sqrt{3}}{\sqrt{4}+\sqrt{4+2\sqrt{3}}}+\frac{4-2\sqrt{3}}{\sqrt{4}-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{4+2\sqrt{3}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{4-2\sqrt{3}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)\(=\frac{4+2\sqrt{3}}{2+\sqrt{3}+1}+\frac{4-2\sqrt{3}}{2-\sqrt{3}+1}\)
\(=\frac{\left(\sqrt{3}+1\right)^2}{3+\sqrt{3}}+\frac{\left(\sqrt{3}-1\right)^2}{3-\sqrt{3}}\)
\(=\frac{\left(\sqrt{3}+1\right)^2}{\sqrt{3}\left(\sqrt{3}+1\right)}+\frac{\left(\sqrt{3}-1\right)^2}{\sqrt{3}\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+1}{\sqrt{3}}+\frac{\sqrt{3}-1}{\sqrt{3}}\)
\(=\frac{2\sqrt{3}}{\sqrt{3}}=2\)