K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
4 tháng 7 2019

1. b) + kẻ đg cao AH

+ Tứ giác AEDF là hcn

\(\Rightarrow EF=AD\ge AH\)

Dấu "=" xảy ra \(\Leftrightarrow D\equiv H\)

<=> D là chân đg cao kẻ từ A xuống BC

3. a) + ΔADM vuông cân tại M

=> AM = DM

+ Tương tự : BN = CN

+ ΔADM = ΔBCN ( cạnh huyền-góc nhọn )

=> AM = BN => AM = DM = BN = CN

+ ΔADE vuông cân tại A

=> đg cao AM đồng thời là đg trung tuyến

=> DM = EM

+ Tương tự : CN = NF

Do đó : AM = DM = BN = CN = ME = NF

b) + Tứ giác BEMN có \(\left\{{}\begin{matrix}ME=BN\\ME//BN\left(\widehat{AEM}=\widehat{EBN}=45^o\right)\end{matrix}\right.\)

=> Tứ giác BEMN là hbh

=> MN // BE => MN // CD

+ Tứ giác DMNC có \(\left\{{}\begin{matrix}MN//CD\\\widehat{MDC}=\widehat{NCD}\left(=45^o\right)\end{matrix}\right.\)

=> đpcm

15 tháng 10 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath

20 tháng 11 2018

a) Xét tứ giác DMEA có 3 góc vuông nên DMEA là hình chữ nhật.

Theo tính chất hình chữ nhật thì AM = DE.

b) Do DMEA là hình chữ nhật nên DE giao AM tại trung điểm mỗi đường. Do đó, I cũng là trung điểm AM.

Gọi K, H lần lượt là trung điểm của AB và AC.

Xét tam giác BAM có K, I lần lượt là trung điểm của AB và AM nên KI là đường trung bình.

Vậy IK// BC. Tương tự IH//BC.

Lại có KE//BC nên I thuộc KH.

Do KH cố định nên ta có: Khi M di chuyển trên đoạn BC thì I di chuyển trên đoạn KH.

c) Ta đã có DE = AM nên DE ngắn nhất khi và chỉ khi AM có độ dài ngắn nhất.

Lại có AM là đường xiên nên luôn luôn lớn hơn hoặc bằng đường cao AH.

Vậy thì AM có độ dài ngắn nhất khi AM trung với AH tức là M trùng H.

=> DE có độ dài ngắn nhất khi M là chân đường vuông góc hạ từ A xuống BC.

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0
24 tháng 6 2021

giupspp toi zưiiii

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>DA=DE
=>ΔDAE cân tại D

=>góc DAE=góc DEA

c: BA=BE

DA=DE

=>BD là trung trực của AE

20 tháng 12 2022

a: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

nên AEDF là hình chữ nhật

b: Xét ΔABC có CF/CA=CD/CB

nên DF//AB và DF=AB/2

=>Di//AB và DI=AB

=>ABDI là hình bình hành