K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2015

Nếu n>0 => 3n+9n+36  chia hết cho 3 là hợp số ( loại )

Nếu n=0 => 3n+9n+36 = 1+0+36 =37 là số nguyên tố (nhận)

Vậy n=0

26 tháng 11 2017

n thuộc N. =>n lớn hơn hoặc bằng 0

Xét n theo hai trường hợp:

TH1:n lớn hơn 0

Mà n lớn hơn 0 thì 3n+9*n+36 chia hết cho 3

Vì 3n chia hết cho 3, 9*n chia hết cho 3, và 36 cũng chia hết cho 3

=>Nếu n lớn hơn 0 thì 3n+9*n+36 là hợp số

TH2: n=0

Nếu n=0 thì 3n+9*n+36=30+9*0+36=1+0+36=37 là số nguyên tố(tmđb)

Vậy n=0

8 tháng 1 2018

Trước hết, ta chứng minh rằng với mọi số n lớn hơn hoặc bằng 5, điều kiện của đề bài không thỏa mãn.

Thật vậy, với \(n\ge5\), ta có:

+ Nếu n = 5k thì n + 15 chia hết 5. Vậy n + 15 là hợp số.

+ Nếu n = 5k + 1 thì n + 9 chia hết cho 5. Vậy n + 9 là hợp số.

+ Nếu n = 5k + 2 thì n + 3 chia hết cho 5. Vậy n + 3 là hợp số.

+ Nếu n = 5k + 3 thì n + 7 chia hết cho 5. Vậy n + 7 là hợp số.

+ Nếu n = 5k + 4 thì n + 1 chia hết cho 5. Vậy n + 1 là hợp số.

Vậy n < 5.

Để n + 1, n + 3, n + 7, n + 9, n + 13 và n + 15 đều là số nguyên tố thì n phải là số chẵn. Vì nếu n là số lẻ thì các số trên là số chẵn lớn hơn 2, và là hợp số.

Vậy n = 2 hoặc n = 4.

Với n = 2, ta thấy ngay n + 7 = 2 + 7 = 9, là hợp số.

Với n = 4, ta có các số 5, 7, 11, 13, 17, 19 đều là số nguyên tố.

Vậy số cần tìm là n = 4.

  

12 tháng 2 2018

Thử n đến 3 không thỏa mãn

* n=4 thì các số là các số nguyên tố

*Xét n >4 thì các số đó đều lớn hơn 5

Xét các số dư khi chia n cho 5

+ Dư 1 thì n+ 9\(⋮\)5n+9\(⋮\)5

+Dư 2 thì n+13 \(⋮\)5n+13\(⋮\)5

+ Dư 3 thì n+7 \(⋮\)5n+7\(⋮\)5

+ Dư 4 thì n+1 \(⋮\)5n+1\(⋮\)5

+ Dư 0 thì n+15\(⋮\)5n+15\(⋮\)5

Không TM trường hợp nào cả

=>n = 4 là giá trị cần tìm

các số nguyên tố là : {2;3;5;7;11;....}

vì n+1 là số nguyên tố

=>các số tự nhiên n là {1;2;4;6;10;......}

13 tháng 10 2017

có thiếu đề k bn (nếu fan txt thì kb)

8 tháng 1 2018

Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo tại link trên nhé.

7 tháng 8 2016

\(P=3n^3-7n^2+3n+6\)

\(=3n^3+2n^2-9n^2-6n+9n+6\)

\(=n^2\left(3n+2\right)-3n\left(3n+2\right)+3\left(3n+2\right)\)

\(=\left(3n+2\right)\left(n^2-3n+3\right)\)

để p là nguyên tố thì 3n+2 hoặc n2-3n+3  phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài) 

*3n+2=1=>n=-1/3

*n2-3n+3=1<=>n2-3n+2=0

\(\Leftrightarrow n^2-2\times\frac{3}{2}n+\frac{9}{4}-\frac{1}{4}=0\)

\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2=\frac{1}{4}=\left(-\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2\)

                            \(\orbr{\begin{cases}n-\frac{3}{2}=\frac{1}{2}\\n-\frac{3}{2}=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2\\n=1\end{cases}}}\)

nếu n= 2 thì (3n+2)(n2-3n+3)=(3.2+2).1=8 (ko phải số nguyên tố nên ta loại)

vậy n=1