Biết \(m,n\inℕ\)và \(\sqrt{m-174}+\sqrt{m+34}=n\)
Tìm giá trị lớn nhất của \(n\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{\sqrt{x}+1}{\sqrt{x}+4}=\frac{\sqrt{x}+4-3}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}$
Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}+4\geq 4$
$\Rightarrow \frac{3}{\sqrt{x}+4}\leq \frac{3}{4}$
$\Rightarrow \frac{\sqrt{x}+1}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}\geq 1-\frac{3}{4}=\frac{1}{4}$
Vậy $M=\frac{1}{4}$
------------------
$N=\frac{\sqrt{x}+5}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}$
Do $\sqrt{x}\geq 0$ nên $\sqrt{x}+2\geq 2$
$\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}$
$\Rightarrow \frac{\sqrt{x}+5}{\sqrt{x}+2}\leq 1+\frac{3}{2}=\frac{5}{2}$
Vậy $N=\frac{5}{2}$
$\Rightarrow 2M+N =2.\frac{1}{4}+\frac{5}{2}=3$
Đáp án C.
Lời giải:
$\frac{M}{4}=\frac{\sqrt{x}}{\sqrt{x}+2}=1-\frac{2}{\sqrt{x}+2}$
$x\in\mathbb{N}; x< 101\Rightarrow x\leq 100$
$\Rightarrow \sqrt{x}\leq 10$
$\Rightarrow \sqrt{x}+2\leq 12$
$\Rightarrow \frac{2}{\sqrt{x}+2}\geq \frac{1}{6}$
$\Rightarrow \frac{M}{4}\leq \frac{5}{6}$
$\Rightarrow M\leq \frac{10}{3}$
Vậy $M_{\max}=\frac{10}{3}$ khi $x=100$
Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)
\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)
Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)
Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)
a) \(P=1957\)
b) \(S=19.\)
b/ N = \(\frac{\sqrt{x-25}}{10x}\) = \(\frac{1}{10}\sqrt{\frac{x-25}{x^2}}=\frac{1}{10}\sqrt{\frac{1}{x}-\frac{25}{x^2}}\)
Đặt \(\frac{1}{x}=a\)thì ta có
10N = \(\sqrt{a-25a^2}\) = \(1\sqrt{\left(-25a^2+\frac{2×5a}{2×5}-\frac{1}{100}\right)+\frac{1}{100}}\)
= \(\sqrt{\frac{1}{100}-\left(5a-\frac{1}{10}\right)^2}\)
Đạt cực đại là \(\frac{1}{10}\)khi a = \(\frac{1}{50}\)hay x = 50
Vậy N đạt GTLN là \(\frac{1}{100}\)khi x = 50. Hết nợ bạn rồi nhé
Máy hết pin rồi. Nên gợi ý nhá. Dùng hằng đẳng thức là ra hết
\(M=3\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+4\right)^2+14\)
\(=3\left(x+2\sqrt{x}+1\right)-\left(x+8\sqrt{x}+16\right)+14\)
\(=3x+6\sqrt{x}+3-x-8\sqrt{x}-16+14\)
\(=2x-2\sqrt{x}+1\)
\(=2\left(x-4\sqrt{x}+4\right)+6\sqrt{x}-7\)
\(=2\left(\sqrt{x}-2\right)^2+6\sqrt{x}-7\ge2.0+6.\sqrt{4}-7=5\)
Dấu "=" \(x=4\)
Vậy GTNN của M là 4 <=> x = 4
\(\left\{{}\begin{matrix}xz=x+4\left(1\right)\\2y^2=7xz-3x-14\\x^2+y^2=35-z^2\left(3\right)\end{matrix}\right.\left(2\right)\)
Nhận thấy \(x=0\) không là nghiệm của (1) .
\(\rightarrow z=\dfrac{x+4}{x}\)(4)
Thế (1) vào (2) .
\(2y^2=7\left(x+4\right)-3x-14=4x+14\leftrightarrow y^2=2x+7\)(\(x\ge-\dfrac{7}{2}\)) (5)
Thế (4)(5) vào (3)
\(x^2+2x+7=35-\left(\dfrac{x+4}{x}\right)^2\)
\(\Leftrightarrow x^4+2x^3-27x^2+8x+16=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x^2+7x+4\right)=0\)\(\)
TH1 : \(x-4=0\Leftrightarrow x=4\Leftrightarrow\left\{{}\begin{matrix}y=\pm\sqrt{15}\\z=2\end{matrix}\right.\)
TH2 : \(x-1=0\Leftrightarrow x=1\Leftrightarrow\left\{{}\begin{matrix}y=\pm3\\z=5\end{matrix}\right.\)
TH3 : \(x^2+7x+4=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7+\sqrt{33}}{2}\left(TM\right)\\x=\dfrac{-7-\sqrt{33}}{2}\left(KTM\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{-7+\sqrt{33}}{2}\Leftrightarrow\left\{{}\begin{matrix}y=\pm\sqrt[4]{33}\\z=-\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)
a: Ta có: \(N=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
+) Để n lớn nhất => m lớn nhất
+) Để n thuộc N
=> \(\sqrt{m-174}\in N\)
\(\sqrt{m+34}\in N\)
Đặt m-174 =a^2 , m+34 =b^2 ( a, b thuộc N)
=> \(b^2-a^2=34+174=208\)
=> \(\left(b-a\right)\left(b+a\right)=208\) là số chẵn
=> b-a , b+a đồng thời là số chẵn và b+a>b-a
Vì n lớn nhất => a+b lớn nhất
Xét trường hợp:
TH: \(\hept{\begin{cases}b-a=2\\b+a=104\end{cases}\Leftrightarrow}\hept{\begin{cases}b=53\\a=51\end{cases}}\)thử lại thấy thỏa mãn với m=2775 thay vào tính được n=53+51=104
Vậy n=104