K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

\(a,a\left(1-b\right)+a\left(a^2-1\right)\)

\(=a-ab+a^3-a\)

\(=a^3-ab=a\left(a^2-b\right)\)\(\left(đpcm\right)\)

\(b,a\left(b-x\right)+x\left(a+b\right)\)

\(=ab-xa+xa+xb\)

\(=ab+xb=b\left(a+x\right)\)\(\left(đpcm\right)\)

2 tháng 7 2019

a)

\(a\left(1-b\right)+a\left(a^2-1\right)\) 

=\(a-ab+a^3-a=a^3-b=a\left(a^2-b\right)\) (đpcm)

b)

\(a\left(b-x\right)+x\left(a+b\right)\)

\(=ab-ax+xa+xb=ab+xb\) 

\(=b\left(a+x\right)\left(đpcm\right)\) 

hc tốt

5 tháng 7 2016

Các bạn cố gắng giúp mình nha . Mình xin chân thành cảm ơn 

13 tháng 12 2016

a) Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có:
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (1)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2.\left(k^2-1\right)}{d^2.\left(k^2-1\right)}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) suy ra \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

b) Giải:
Để \(P\in Z\Rightarrow2x-3⋮x+1\)

Ta có:
\(2x-3⋮x+1\)

\(\Rightarrow\left(2x+2\right)-5⋮x+1\)

\(\Rightarrow5⋮x+1\)

\(\Rightarrow x+1\in\left\{1;-1;5;-5\right\}\)

+) \(x+1=1\Rightarrow x=0\)

+) \(x+1=-1\Rightarrow x=-2\)

+) \(x+1=5\Rightarrow x=4\)

+) \(x+1=-5\Rightarrow x=-6\)

Vậy \(x\in\left\{0;-2;4;-6\right\}\)

 

 

\(\Rightarrow5⋮x+1\)

13 tháng 12 2016

1)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(tính chất dãy tỉ số bằng nhau)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

2)\(P=\frac{2x-3}{x+1}=\frac{2x+2-5}{x+1}=\frac{2\left(x+1\right)-5}{x+1}=2-\frac{5}{x+1}\)

\(\Rightarrow P\in Z\Leftrightarrow2-\frac{5}{x+1}\in Z\Leftrightarrow\frac{5}{x+1}\in Z\Leftrightarrow5⋮x+1\Leftrightarrow x+1\inƯ\left(5\right)\)

\(\Rightarrow x+1\in\left\{-1;-5;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;-6;0;4\right\}\)

29 tháng 7 2019

a) Ta có: 2|x + 2| \(\ge\)\(\forall\)x

=> 2|x + 2| + 15 \(\ge\)15 \(\forall\)x

Hay A \(\ge\)15 \(\forall\)x

Dấu "=" xảy ra <=>x + 2 = 0 <=> x = -2

Vậy Min A = 15 tại x = -2

b) Ta có: 2(x + 5)4 \(\ge\)\(\forall\)x

         3|x + y + 2| \(\ge\)\(\forall\)x;y

=> 20 - 2(x + 5)4 - 3|x + y + 2| \(\le\)20 \(\forall\)x;y

Hay B \(\le\)20 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\x+y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-x\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-\left(-5\right)=3\end{cases}}\)

Vậy Max B = 20 tại x = -5 và y = 3

12 tháng 7 2017

CO   UCLN(a;b)=45  suy ra   a=45.m ; b=45.n  (m>n  vi  a>b)   (m;n  nguyen to cung nhau)

Vi a+b=270  suy ra  45.m+45.n=270  suy ra  45.(m+n)=270    suy ra m+n=6

suy ra (m;n)=(5;1);(4;2)  

ma m;n nguyen to cung nhau suy ra   

m=5; n=1    suy ra a=45.5=225       b=45.1=45

h dung nha