Cho tam giác ABC có G là trọng tâm. Một đường thẳng đi qua G cắt các cạnh AB, AC theo thứ tự ở C', B' và cắt tia đối của tia CB ở A'. Cmr:
1/GA' +1/GB'=1/GC'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này ghi các tỉ số hơi rối, cố gắng theo dỏi nha, khi sử dụng định lí Thales, hay phân tách các cạnh tôi ko chỉ ra vì để cho phép biến đổi được liên tục.
*******************************
Gọi M là trung điểm BC. có AM/AG = 3/2
Qua B dựng đường thẳng song song với ED, cắt AC tại K.
ko giãm tính tổng quát, giã sử K nằm trên đoạn AC.
<<Nếu ngược lại K nằm trên tia đối của tia CA thì ta chọn ngược lại từ C >>
Gọi H là trung điểm KC => MH // BK (tính chất đường trung bình)
Ta có: AB / AD = AK / AE (1)
mặt khác:
AC / AE = (AH + HC)/AE = AH / AE + HC / AE =
= AM / AG + HC / AE = 3/2 + KH / AE (2)
(1) + (2):
AB / AD + AC / AE = 3/2 + AK / AE + KH / AE = 3/2 + (AK + KH) / AE =
= 3/2 + AH / AE = 3/2 + AM / AG = 3/2 + 3/2 = 3
Kéo dài AG cắt BC tại E
Kẻ $BM//A'C', CN//A'C' (M, N \in AE)$
Xét $\Delta ABM$ có $BM//GC' \Longrightarrow \dfrac{BM}{GC'}=\dfrac{AM}{AG}$
$CN//GA' \Longrightarrow \dfrac{CN}{GA'}=\dfrac{EN}{EG}=\dfrac{2EN}{AG}$
$CN//GB \Longrightarrow \dfrac{CN}{GB'}=\dfrac{AN}{AG}$
CM: $\Delta BME=\Delta CNE(g-c-g) \Longrightarrow BM=CN; EN=EM$
$\Longrightarrow \dfrac{CN}{GA'}+\dfrac{CN}{GB'}=\dfrac{2EN}{AG}+ \dfrac{AN}{AG}=\dfrac{2EN+AN}{AG}=\dfrac{AM}{AG}$
$\Longrightarrow \dfrac{CN}{GA'}+\dfrac{CN}{GB'}= \dfrac{BM}{GC'}$
$\Longrightarrow \dfrac{1}{GA'}+\dfrac{1}{GB'}= \dfrac{1}{GC'}$
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).