Chứng minh :
A) x2 - 3 *x +4>0
B) x2 -5*x +8>0
C) x2 + y2 + 2 *x *y -4 *x -4 *y +5>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR: \(\frac{1}{x}+\frac{1}{y}\le2\) biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0
a) \(x^2+x+2=\left(x^2+x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)đúng \(\forall x\in R\)
b) \(x^2-4x+10=\left(x^2-4x+4\right)+6=\left(x-2\right)^2+6\ge6>0\)đúng \(\forall x\in R\)
c) \(x\left(x-4\right)+10=x^2-4x+10\)(giải như câu b)
d) \(x\left(2-x\right)-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3< 0\)đúng \(\forall x\in R\)
e) \(x^2-5x+2017=\left(x^2-5x+\frac{25}{4}\right)+\frac{8043}{4}=\left(x-\frac{5}{2}\right)^2+\frac{8043}{4}\ge\frac{8043}{4}>0\)đúng \(\forall x\in R\)
* Ta có: \(A\left(x\right)=x^2-4x+5=\left(x^2-2\cdot x\cdot2+2^2\right)-2^2+5=\left(x-2\right)^2+1\ge1>0\)
Vậy \(A\left(x\right)=x^2-4x+5>0\)
b. \(B\left(x\right)=x^2+x+1=\left[x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Vậy \(B\left(x\right)=x^2+x+1>0\)
c. \(C\left(x\right)=8x-x^2-17=-x^2+8x-17=-\left(x^2-8x\right)-17=-\left(x^2-2\cdot x\cdot4+4^2\right)+4^2-17=-\left(x-4\right)^2-1\le-1< 0\)
Vậy \(C\left(x\right)=8x-x^2-17< 0\)
\(\left(x-3\right)\left(4-x\right)>0\)
\(\Rightarrow\)\(\hept{\begin{cases}x-3>0\\4-x>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>3\\x< 4\end{cases}}\) (vô lí)
hoặc \(\hept{\begin{cases}x-3< 0\\4-x< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 3\\x>4\end{cases}}\)(vô lí)
Vậy \(x=\Phi\)
a) \(x^2-3x+4\)
\(=x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{7}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)
b) \(x^2-5x+8\)
\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{7}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}>0\forall x\)
c) \(x^2+y^2+2x-4x-4y+5\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+1\)
\(=\left(x+y-2\right)^2+1>0\forall x\)