K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

\(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2015}+\frac{1}{2016}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{1003}\right)\)

\(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2016}\)

1 tháng 5 2016

Đặt A=1-1/2+1/3-1/4+.......+1/2005-1/2006

=>A= (1+1/3+1/5+...+1/2005)-(1/2+1/4+1/6+.....+1/2006)

=>A=(1+1/2+1/3+...+1/2005)-2.(1/2+1/4+1/6+...+1/2006)

=>A=(1+1/2+1/3+....+1/2005)-(1+1/2+1/3+...+1/1003)

=>A=1/1004+1/1005+.....+1/2006

Vậy A=1/1004+1/1005+.....+1/2006 ( Điều phải chứng minh )


 

2 tháng 4 2017

Đặt biểu thức là A ta có:

 \(A=\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+...+\frac{1}{2006}}\)

\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}\right)}{1+\left(1+\frac{2005}{2}\right)+\left(1+\frac{2004}{3}\right)+...+\left(1+\frac{1}{2006}\right)}\)

\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)}{1+\frac{2007}{2}+\frac{2007}{3}+...+\frac{2007}{2006}}\)

\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)}{2007.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}+\frac{1}{2007}\right)}\)

\(\Rightarrow A=\frac{2006}{2007}\)

23 tháng 10 2016

Gọi a là tử số, b là mẫu số của phân số A

a = \(\frac{2008}{1}\)\(\frac{2007}{2}\)\(\frac{2006}{3}\)+ ... + \(\frac{1}{2008}\)

Dãy số a có (2008 - 1)  : 1 + 1 = 2008 số. Và a = ( \(\frac{2008}{1}\)\(\frac{1}{2008}\)) x (2008 : 2) 

b = \(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ ... + \(\frac{1}{2009}\)

Dãy số b có (2009 - 2) : 1 + 1 = 2008 số. Và b = (\(\frac{1}{2}\)\(\frac{1}{2009}\)) x (2008 : 2)

A = [ ( \(\frac{2008}{1}\)\(\frac{1}{2008}\)) x (2008 : 2)] : [ (\(\frac{1}{2}\)\(\frac{1}{2009}\)) x (2008 : 2)] = ( \(\frac{2008}{1}\)\(\frac{1}{2008}\)) :  (\(\frac{1}{2}\)\(\frac{1}{2009}\)

A = \(\frac{\text{2008 x2008 + 1}}{2008}\)\(\frac{2x2009+2}{2x2009}\)

A = 2008

13 tháng 11 2020

\(C=\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+....+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+.....+\frac{1}{2006}}\)

Đặt N = \(\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+.....+\frac{1}{2006}\)

\(\Rightarrow N=\frac{1}{2006}+.....+\frac{2004}{3}+\frac{2005}{2}+\frac{2006}{1}\)

\(\Rightarrow N=\left(\frac{1}{2006}+1\right)+.....+\left(\frac{2004}{3}+1\right)+\left(\frac{2005}{2}+1\right)+1\)( Có 2005 nhóm )

\(=\frac{2007}{2006}+....+\frac{2007}{3}+\frac{2007}{2}+\frac{2007}{2007}\)
\(=2007\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2006}+\frac{1}{2007}\right)\)

Đặt M = \(\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+....+\frac{2006}{2007}\)

\(=2006\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}\right)\)

Thay N và M vào C , ta có :

\(C=\frac{N}{M}=\frac{2006\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}\right)}{2007\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2007}\right)}=\frac{2006}{2007}\)

\(\Rightarrow C=\frac{2006}{2007}\)

Vậy : \(C=\frac{2006}{2007}\)

11 tháng 12 2016

1/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)

\(\Leftrightarrow\frac{a+b+c}{abc}=0\)(đúng)

Vậy ta có ĐPCM

11 tháng 12 2016

2/ \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2006}-\sqrt{2005}\)

\(=\sqrt{2006}-1\)

29 tháng 3 2015

\(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=\frac{\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+\left(1+\frac{2005}{4}\right)+...+\left(1+\frac{1}{2007}\right)+\left(1+\frac{1}{2008}\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=\frac{\frac{2009}{2}+\frac{2009}{3}+\frac{2009}{4}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=\frac{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}=2009\)