M=1/3+1/3^2+1/3^3+....+1/3^99. CMR: M<1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho M=1/2*2/3..............*99/100
N=2/3*3/4*...................*100/101
CMR : M<N
Tính: M*N
CMR;M<1/10
Bạn vào link này nè:https://olm.vn/hoi-dap/detail/55490238293.html?pos=83878663774
1.
a.\(A=1-3+3^2-3^3+...+3^{98}-3^{99}\\ =\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\\ =\left(1-3+3^2-3^3\right)+3^4\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\\ =\left(1-3+3^2-3^3\right)\left(1+3^4+...+3^{96}\right)\\ =\left(-20\right)\left(1+3^4+...+3^{96}\right)⋮\left(-20\right)\\ \Rightarrow A\in B\left(-20\right)\\ \Rightarrow A⋮4\)b.\(A=1-3+3^2-3^3+...+3^{98}-3^{99}\\ 3A=3-3^2+3^3-3^4+...+3^{99}-3^{100}\\ A+3A=\left(1-3+3^2-3^3+...+3^{98}-3^{99}\right)\left(3-3^2+3^3-3^4+...+3^{99}-3^{100}\right)\\ 4A=1-3^{100}\\ A=\dfrac{1-3^{100}}{4}\)c. Ta có:
\(-4A⋮4\\ \Leftrightarrow-\left(1-3^{100}\right)⋮4\\\Leftrightarrow 3^{100}-1⋮4\\ \Rightarrow3^{100}\text{ chia }4\text{ dư }1\)
2.
\(\left(x-3\right)\left(2y+1\right)=7\Rightarrow\left\{{}\begin{matrix}x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\2y+1=\dfrac{7}{x-3}\end{matrix}\right.\)
$ x - 3 $ | $ 2y + 1 $ | $ x $ | $ y $ |
$ - 7 $ | $ - 1 $ | $ - 4 $ | $ - 1 $ |
$ - 1 $ | $ - 7 $ | $ 2 $ | $ - 4 $ |
$ 1 $ | $ 7 $ | $ 4 $ | $ 3 $ |
$ 7 $ | $ 1 $ | $ 10 $ | $ 0 $ |
\(M=1+\frac{1}{2.\left(1+2\right)}+\frac{1}{3.\left(1+2+3\right)}+...+\frac{1}{99.\left(1+2+3+...+99\right)}\)
\(M=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{4950}\)
\(M=1-\frac{1}{4950}\)
\(M=\frac{4949}{4950}\)
\(\frac{T}{M}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{1}{99}+\frac{2}{98}+...+\frac{98}{2}+\frac{99}{1}}\)
Xét M - 99 + 98 = \(\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}\)
\(\Leftrightarrow M-1=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)\)
\(\Rightarrow M=\frac{100}{100}+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(\Rightarrow\frac{T}{M}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)
C = 1/3 + 1/3^2 + 1/3^3 + ... =1/3^99
=> C = 1/3^99 = 1/(3^99)
=> C < 1/2 (đpcm)
2A=2^101-2^100+2^98+...+2^3-2^2
3A = 2A + A
3A = 2^101 - 2 ( Cứ tính là ra , âm vs dương triệt tiêu )
A = (2^101-2) :3
B tăng tự
\(\frac{1}{3}M=\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{100}}\)
\(M-\frac{1}{3}M=\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+....+\left(\frac{1}{3^{99}}-\frac{1}{3^{99}}\right)+\frac{1}{3}-\frac{1}{3^{100}}\)
\(\frac{2}{3}M=\frac{1}{3}-\frac{1}{3^{100}}\)
Vậy \(M=\left(\frac{1}{3}-\frac{1}{3^{100}}\right):\frac{2}{3}=\frac{1}{2}-\frac{1}{2.3^{99}}<\frac{1}{2}\)
KL: M < 1/2 (dpcm)